100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Mathematical Methods in the Physical Sciences, Boas - Downloadable Solutions Manual (Revised)

Rating
-
Sold
-
Pages
71
Grade
A+
Uploaded on
17-07-2022
Written in
2021/2022

Description: Solutions Manual for Mathematical Methods in the Physical Sciences, Boas, 3e is all you need if you are in need for a manual that solves all the exercises and problems within your textbook. Answers have been verified by highly experienced instructors who teaches courses and author textbooks. If you need a study guide that aids you in your homework, then the solutions manual for Mathematical Methods in the Physical Sciences, Boas, 3e is the one to go for you. Disclaimer: We take copyright seriously. While we do our best to adhere to all IP laws mistakes sometimes happen. Therefore, if you believe the document contains infringed material, please get in touch with us and provide your electronic signature. and upon verification the doc will be deleted.

Show more Read less











Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
July 17, 2022
Number of pages
71
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Chapter 1


1.1 (2/3)10 = 0.0173 yd; 6(2/3)10 = 0.104 yd (compared to a total of 5 yd)
1.3 5/9 1.4 9/11 1.5 7/12
1.6 11/18 1.7 5/27 1.8 25/36
1.9 6/7 1.10 15/26 1.11 19/28
1.13 $1646.99 1.15 Blank area = 1
1.16 At x = 1: 1/(1 + r); at x = 0: r/(1 + r); maximum escape at x = 0 is 1/2.

2.1 1 2.2 1/2 2.3 0
2.4 ∞ 2.5 0 2.6 ∞
2.7 e2 2.8 0 2.9 1

4.1 an = 1/2n → 0; Sn = 1 − 1/2n → 1; Rn = 1/2n → 0
4.2 an = 1/5n−1 → 0; Sn = (5/4)(1 − 1/5n ) → 5/4; Rn = 1/(4 · 5n−1 ) → 0
4.3 an = (−1/2)n−1 → 0; Sn = (2/3)[1 − (−1/2)n ] → 2/3; Rn = (2/3)(−1/2)n → 0
4.4 an = 1/3n → 0; Sn = (1/2)(1 − 1/3n ) → 1/2; Rn = 1/(2 · 3n ) → 0
4.5 an = (3/4)n−1 → 0; Sn = 4[1 − (3/4)n ] → 4; Rn = 4(3/4)n → 0
1 1 1
4.6 an = → 0; Sn = 1 − → 1; Rn = →0
n(n + 1) n+1 n+1
(−1)n+1 (−1)n
 
1 1
4.7 an = (−1)n+1 + → 0 ; Sn = 1 + → 1; Rn = →0
n n+1 n+1 n+1

5.1 D 5.2 Test further 5.3 Test further
5.4 D 5.5 D 5.6 Test further
5.7 Test further 5.8 Test further
5.9 D 5.10 D

6.5 (a) D 6.5 (b) D
R∞
Note: In the following answers, I= an dn; ρ = test ratio.
6.7 D, I = ∞ 6.8 D, I = ∞ 6.9 C, I = 0
6.10 C, I = π/6 6.11 C, I = 0 6.12 C, I = 0
6.13 D, I = ∞ 6.14 D, I = ∞ 6.18 D, ρ = 2
6.19 C, ρ = 3/4 6.20 C, ρ = 0 6.21 D, ρ = 5/4
6.22 C, ρ = 0 6.23 D, ρ = ∞ 6.24 D, ρ = 9/8
6.25 C, ρ = 0 6.26 C, ρ = (e/3)3 6.27 D, ρ =P100
6.28 C, ρ =P 4/27 6.29 D, ρ =P2 6.31 D, cf. P n−1
6.32 D, cf. n−1 6.33 C, cf. 2−n 6.34 C, cf. n−2
P −2 P −1/2
6.35 C, cf. n 6.36 D, cf. n




1

,Chapter 1 2


7.1 C 7.2 D 7.3 C 7.4 C
7.5 C 7.6 D 7.7 C 7.8 C
P −1
9.1 D, cf. n 9.2 D, an 6→ 0 P −1
9.3 C, I =P0 9.4 D, I = ∞, or cf. n
9.5 C, cf. n−2 9.6 C, ρ = 1/4
9.7 D, ρ = 4/3 9.8 C, ρ = 1/5
9.9 D, ρ = e 9.10 D, an 6→
P 0 −2
D, I = ∞, or cf.P n−1
P
9.11 9.12 C, cf. n
9.13 C, I = 0, or cf. n−2 9.14 C, alt.Pser.
9.15 D, ρ = ∞, an 6→ 0 9.16 C, cf. n−2
9.17 C, ρ = 1/27 9.18 C, alt. ser.
9.19 C 9.20 C
9.21 C, ρ = 1/2
9.22 (a) C (b) D (c) k > e

10.1 |x| < √ 1 10.2 |x| < 3/2 10.3 |x| ≤ 1
10.4 |x| ≤ 2 10.5 All x 10.6 All x
10.7 −1 ≤ x < 1 10.8 −1 < x ≤ 1 10.9 |x| < 1
10.10 |x| ≤ 1 10.11 −5 ≤ x < 5 10.12 |x| < 1/2
10.13 −1 < x ≤ 1 10.14 |x| < 3 10.15 −1 < x < 5
10.16 −1 < x < 3 10.17 −2 < x ≤ 0 10.18 −3/4 ≤ x ≤ −1/4
10.19 |x| < 3 10.20 All x 10.21 0 ≤ x √≤1
10.22 No x 10.23 x > 2 or x < −4 10.24 |x| < 5/2
10.25 nπ − π/6 < x < nπ + π/6

(−1)n (2n − 1)!!
   
−1/2 −1/2
13.4 = 1; =
0 n (2n)!!
Answers to part (b), Problems 5 to 19:
∞ n+2 ∞  
X x X 1/2 n+1
13.5 − 13.6 x (see Example 2)
1
n 0
n
∞ ∞ 
(−1)n x2n

X X −1/2
13.7 13.8 (−x2 )n (see Problem 13.4)
0
(2n + 1)! 0
n
∞ ∞
X X (−1)n x4n+2
13.9 1 + 2 xn 13.10
1 0
(2n + 1)!
∞ n n ∞
X (−1) x X (−1)n x4n+1
13.11 13.12
0
(2n + 1)! 0
(2n)!(4n + 1)
∞ n 2n+1 ∞
X (−1) x X x2n+1
13.13 13.14
0
n!(2n + 1) 0
2n + 1

x2n+1

X −1/2 
13.15 (−1)n
0
n 2n + 1
∞ 2n ∞
X x X xn
13.16 13.17 2
0
(2n)! n
oddn

X (−1)n x2n+1 ∞
X −1/2 x2n+1

13.18 13.19
0
(2n + 1)(2n + 1)! 0
n 2n + 1
2 3 5 6
13.20 x + x + x /3 − x /30 − x /90 · · ·
13.21 x2 + 2x4 /3 + 17x6 /45 · · ·
13.22 1 + 2x + 5x2 /2 + 8x3 /3 + 65x4 /24 · · ·
13.23 1 − x + x3 − x4 + x6 · · ·

,Chapter 1 3


13.24 1 + x2 /2! + 5x4 /4! + 61x6 /6! · · ·
13.25 1 − x + x2 /3 − x4 /45 · · ·
13.26 1 + x2 /4 + 7x4 /96 + 139x6 /5760 · · ·
13.27 1 + x + x2 /2 − x4 /8 − x5 /15 · · ·
13.28 x − x2 /2 + x3 /6 − x5 /12 · · ·
13.29 1 + x/2 − 3x2 /8 + 17x3 /48 · · ·
13.30 1 − x + x2 /2 − x3 /2 + 3x4 /8 − 3x5 /8 · · ·
13.31 1 − x2 /2 − x3 /2 − x4 /4 − x5 /24 · · ·
13.32 x + x2 /2 − x3 /6 − x4 /12 · · ·
13.33 1 + x3 /6 + x4 /6 + 19x5 /120 + 19x6 /120 · · ·
13.34 x − x2 + x3 − 13x4 /12 + 5x5 /4 · · ·
13.35 1 + x2 /3! + 7x4 /(3 · 5!) + 31x6 /(3 · 7!) · · ·
13.36 u2 /2 + u4 /12 + u6 /20 · · ·
13.37 −(x2 /2 + x4 /12 + x6 /45 · · · )
13.38 e(1 − x2 /2 + x4 /6 · · · )
4
13.39 1 − (x − π/2)2 /2! + (x − π/2) /4! · · ·
3
13.40 1 − (x − 1) + (x − 1)2 − (x − 1) · · ·
13.41 e [1 + (x − 3) + (x − 3) /2! + (x − 3)3 /3! · · · ]
3 2
2
13.42 −1 + (x − π) /2! − (x − π)4 /4! · · ·
13.43 −[(x − π/2) + (x − π/2)3 /3 + 2(x − π/2)5 /15 · · · ]
13.44 5 + (x − 25)/10 − (x − 25)2 /103 + (x − 25)3 /(5 · 104 ) · · ·

14.6 Error < (1/2)(0.1)2 ÷ (1 − 0.1) < 0.0056
14.7 Error < (3/8)(1/4)2 ÷ (1 − 14 ) = 1/32
14.8 For x < 0, error < (1/64)(1/2)4 < 0.001
For x > 0, error < 0.001 ÷ (1 − 12 ) = 0.002
1
14.9 Term n + 1 is an+1 = (n+1)(n+2) , so Rn = (n + 2)an+1 .
14.10 S4 = 0.3052, error < 0.0021 (cf. S = 1 − ln 2 = 0.307)

15.1 −x4 /24 − x5 /30 · · · ' −3.376 × 10−16
15.2 x8 /3 − 14x12 /45 · · · ' 1.433 × 10−16
15.3 x5 /15 − 2x7 /45 · · · ' 6.667 × 10−17
15.4 x3 /3 + 5x4 /6 · · · ' 1.430 × 10−11
15.5 0 15.6 12 15.7 10!
15.8 1/2 15.9 −1/6 15.10 −1
15.11 4 15.12 1/3 15.13 −1
15.14 t − t3 /3, error < 10−6 15.15 23 t3/2 − 52 t5/2 , error < 17 10−7
15.16 e2 − 1 15.17 √cos π2 = 0
15.18 ln 2 15.19 2
15.20 (a) 1/8 (b) 5e (c) 9/4
15.21 (a) 0.397117 (b) 0.937548 (c) 1.291286
15.22 (a) π 4 /90 (b) 1.202057 (c) 2.612375
15.23 (a) 1/2 (b) 1/6 (c) 1/3 (d) −1/2
15.24 (a) −π (b) 0 (c) −1
(d) 0 (e) 0 (f) 0
15.27 (a) 1 − vc = 1.3 × 10−5 , or v = 0.999987c
(b) 1 − vc = 5.2 × 10−7
(c) 1 − vc = 2.1 × 10−10
(d) 1 − vc = 1.3 × 10−11
15.28 mc2 + 21 mv 2
15.29 (a) F/W = θ + θ3 /3 · · ·
(b) F/W = x/l + x3 /(2l3 ) + 3x5 /(8l5 ) · · ·

, Chapter 1 4


15.30 (a) T = F (5/x + x/40 − x3 /16000 · · · )
(b) T = 21 (F/θ)(1 + θ2 /6 + 7θ4 /360 · · · )
15.31 (a) finite (b) infinite

16.1 (c) overhang: 2 3 10 100
books needed: 32 228 2.7 × 108 4 × 1086
P −3/2
16.4 C, ρ = 0 16.5 D, an 6→ P 0 −1 16.6 C, cf. n
16.7 D, I = ∞ 16.8 D, cf. n 16.9 −1 ≤ x < 1
16.10 |x| < 4 16.11 |x| ≤ 1 16.12 |x| < 5
16.13 −5 < x ≤ 1
16.14 1 − x2 /2 + x3 /2 − 5x4 /12 · · ·
16.15 −x2 /6 − x4 /180 − x6 /2835 · · ·
16.16 1 − x/2 + 3x2 /8 − 11x3 /48 + 19x4 /128 · · ·
16.17 1 + x2 /2 + x4 /4 + 7x6 /48 · · ·
16.18 x − x3 /3 + x5 /5 − x7 /7 · · ·
16.19 −(x − π) + (x − π)3 /3! − (x − π)5 /5! · · ·
16.20 2 + (x − 8)/12 − (x − 8)2 /(25 · 32 ) + 5(x − 8)3 /(28 · 34 ) · · ·
16.21 e[1 + (x − 1) + (x − 1)2 /2! + (x − 1)3 /3! · · · ]
16.22 arc tan 1 = π/4 16.23 1 − (sinπ)/π = 1
16.24 eln 3 − 1 = 2 16.25 −2
16.26 −1/3 16.27 2/3
16.28 1 16.29 6!
16.30 (b) For N = 130, 10.5821 < ζ(1.1) < 10.5868
16.31 (a) 10430 terms. For N = 200, 100.5755 < ζ(1.01) < 100.5803
16.31 (b) 2.66 × 1086 terms. For N = 15, 1.6905 < S < 1.6952
200 86
16.31 (c) ee = 103.1382×10 terms. For N = 40, 38.4048 < S < 38.4088

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
tb4u City University New York
View profile
Follow You need to be logged in order to follow users or courses
Sold
973
Member since
3 year
Number of followers
776
Documents
2374
Last sold
6 days ago

4.0

158 reviews

5
87
4
27
3
19
2
6
1
19

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions