3. 8. Stoke's Theorems
evaluate flux integrals under specific conditions
of field
integrals vector :
line a
"
! Edt must be conservative
2) { f- ( Fcb) ) feria))
'
Fdr
'
-
-
3) ftp.dxeady-DQx-bydA
R
Now JSÉ .dj ( LU 3.7)
↳ surface integral
HE .DE fggdivfdv
143-8 143-9
'
f) curl E. 05=5 Edf -
'
E
S
Right-hand Rule ,
-
$tt•¥F*r¥nTthh - -
i
- "
shows in direction of ñ orientated surface
Thumb -
i. let sbea
arts
'
Curl in direction Ofc
'
let c be the boundary
fingers
'
I
as given by
RHR
-
with direction
I
1 Then
dÉ=jÉjj
.
of surface Crim ) your / E. ,
boundary ,
{ int {
Us
-
orientated surface I int
I
← l
- - - - - - -
-
←
↓ ↓
ñ
Stokes relation → flux int .
+ line int .
overs over a
( Rotation
theorem
evaluate flux integrals under specific conditions
of field
integrals vector :
line a
"
! Edt must be conservative
2) { f- ( Fcb) ) feria))
'
Fdr
'
-
-
3) ftp.dxeady-DQx-bydA
R
Now JSÉ .dj ( LU 3.7)
↳ surface integral
HE .DE fggdivfdv
143-8 143-9
'
f) curl E. 05=5 Edf -
'
E
S
Right-hand Rule ,
-
$tt•¥F*r¥nTthh - -
i
- "
shows in direction of ñ orientated surface
Thumb -
i. let sbea
arts
'
Curl in direction Ofc
'
let c be the boundary
fingers
'
I
as given by
RHR
-
with direction
I
1 Then
dÉ=jÉjj
.
of surface Crim ) your / E. ,
boundary ,
{ int {
Us
-
orientated surface I int
I
← l
- - - - - - -
-
←
↓ ↓
ñ
Stokes relation → flux int .
+ line int .
overs over a
( Rotation
theorem