100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Key Concepts of Data Science

Rating
-
Sold
-
Pages
12
Uploaded on
22-06-2022
Written in
2021/2022

Key Concepts of data science, lined out. This is part of my more comprehensive Data Science summary(50+ pages). Use this if you already know a lot about Data science otherwise buy the other document since that is the comprehensive summary + key concepts

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 22, 2022
Number of pages
12
Written in
2021/2022
Type
Summary

Subjects

Content preview

This document only contains the Key Concepts.

Buy my other summary for a 50+ pager for a more comprehensive explanation of everything


https://www.stuvia.com/doc/1809995/data-science-summary-key-concepts-more-compact-summary

, Key concepts

List of steps to take in data science Execute experiment:
1. Explore 1. Task definition
2. Formulate research question 2. Data collection
3. Data exploration
3. Structure and annotate data
4. Preprocessing
4. Develop and apply learning 5. Model learning
techniques 6. Evaluation
5. Evaluate on data
6. Answer the research question


List three challenges of working with data:
1. Noisy data
2. Small data / large data
3. Data can be incomplete

different sampling rates, different formats, wrongly chosen or irrelevant variables, large / unknown
number of classes, class imbalance, heterogeneous data / features, new domain, …

How to give a clear definition of a task, based on a given data set
:
● Research question
● Determine supervised vs unsupervised
● Classification or regression (or clustering if its unsu pervised)
● Problem definition:
○ Features and their type (binary, nominal(multi categorical), numerical)
○ Target labels and their type (binary, nominal, numerical)

Use median vs mean: Mean when the distribution is symmetrical and median otherwise.

Explain simple linear regression, multiple linear regression and logistic regression:

● Linear regression: Defines the relationship between two variables.
used to handle basic regressions (when the relation between two vars is clear
and simple),

● Multiple linear regression: defines relationship by more than one value
Used more complex connections between data (house prices need more
variables than bedrooms for example)

● Logistic regression: Discriminative model that learns to distinguish between two
classes
Used to handle classification problems

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
jessedegans Universiteit Leiden
Follow You need to be logged in order to follow users or courses
Sold
17
Member since
6 year
Number of followers
15
Documents
8
Last sold
1 year ago

3.5

4 reviews

5
1
4
1
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions