100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting h8 : limieten en continuïteit

Rating
-
Sold
1
Pages
5
Uploaded on
15-06-2022
Written in
2021/2022

Deze samenvatting is gebaseerd op het boek delta nova analyse deel 2 5 maar je kan ze ook zeker gebruiken als je een ander boek hebt. In de samenvatting staat de theorie maar ook stappenplannen van hoe je de oefeningen zou moeten maken.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Secondary school
Study
3rd degree
Course
School year
5

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 8
Uploaded on
June 15, 2022
Number of pages
5
Written in
2021/2022
Type
Summary

Subjects

Content preview

H8 LIMIETEN EN CONTINUÏTEIT

8.1 LIMIETEN

Informele limiet ‘steeds dichter’, ‘voldoende dicht naderen tot’
en ‘onbeperkt toe- of afnemen’ niet exact
gedefinieerd is
linkerlimiet lim f ( x )
x→ a
¿
rechterlimiet lim f ( x )
x→ a
¿
Verband tussen limiet, linkerlimiet en lim f ( x ) = b
x→ a
rechterlimiet

lim f ( x ) lim f ( x )
x→ a = x→ a =b
¿ ¿
8.2 LIMIETEN BEREKENEN

8.2.1 FUNDAMENTELE LIMIETEN

F(x) = c : lim
x→ a
f (x ) = c

F(x) = x : lim f ( x ) = a
x→ a

F(x) = 1/x : lim f ( x ) = 1/a met a≠0
x→ a
8.2.2 REKENREGELS VOOR EINDIGE LIMIETEN

Definitie eindige limieten Indien lim f ( x ) = b met b
x→ a
∈ R , dan noemen we lim f (x ) een eindige
x→ a
limiet
Rekenregels - De limiet van een som is de som van de
limieten
- De limiet van een verschil is het verschil
van de limieten
- De limiet van een product is het
product van de limieten
- De limiet van een veelvoud is het
veelvoud van de limiet
- De limiet van een quotiënt is het
quotiënt van de limieten
- De limiet van een macht met rationale
exponent is de macht van de limiet
De limiet van een som is de som van de limieten lim ¿ ¿ + g(x)) = lim f ( x ) + lim g ( x)
x→ a x→ a x→ a
: in symbolen
De limiet van een verschil is het verschil van de lim ¿ – g(x)) = lim f (x ) - lim g ( x)
x→ a x→ a x→ a
limieten : in symbolen
De limiet van een product is het product van de lim ¿ ¿ * g(x)) = c * lim g ( x)
x→ a x→ a
limieten : in symbolen
De limiet van een veelvoud is het veelvoud van lim (r∗f ( x)) = r* lim f (x )
x→ a x→ a
de limiet : in symbolen

, De limiet van een quotiënt is het quotiënt van lim f ( x)
f (x) x →a
de limieten : in symbolen lim = als lim g (x) ≠ 0
x→ a g(x ) lim g( x ) x→ a
x →a
De limiet van een macht met rationale lim ( f ( x ) ) = ( lim f ( x ))q (q∈Q 0 ¿ als
q

exponent is de macht van de limiet : in x→ a x →a
q
symbolen ( lim f ( x )) gedefineerd is
x →a
8.2.3 REKENREGELS VOOR ONEINDIGE LIMIETEN

Definitie oneindige limieten Is lim f ( x ) = + ∞ of lim f (x )= -∞ , dan noemen
x→ a x→ a

we lim f ( x ) een oneindige limiet
x→ a
Eerste rekenregel en symbolische notatie Als lim f ( x ) = + ∞ en lim g ( x) = + ∞ , dan is
x→ a x→ a
lim ( f ( x ) + g ( x )) = + ∞
x→ a

En lim ( f ( x )∗g ( x ) ) = + ∞
x→ a
(+∞ ¿+ (+∞ ) = +∞
(-∞ ) + (-∞ ) = -∞
(+∞ ¿- (-∞ ) = +∞
(-∞ ) – (+∞ ¿=¿ -∞
r + (+∞ ) = (+∞ ) + r = ∀r∈R +∞
r + (-∞ ) = (-∞ ) + r = ∀r∈R -∞
r – (+∞ ) = ∀r ∈R -∞
r – (-∞ ) = ∀r∈R +∞
√n +∞ = met n ∈ N 0 +∞
√n −∞ = met n ∈ N 0 -∞
(+ ∞)q = met q +∞
+¿ ¿
∈Q 0
(+∞ ) * (+∞ )= +∞
(-∞ ) * (-∞ ) = +∞
(+∞ ) * (-∞ ) = -∞
(-∞ ) * (+∞ ) = -∞
r * (+∞ ) = (+∞ ) * r = +∞
∀ r ∈ R+¿¿
0
r* (+∞ ) = (+∞ ) * r = -∞
∀ r ∈ R−¿0
¿


r * (-∞ ) = (-∞ ) * r = -∞
∀ r ∈ R+¿¿
0
r * (-∞ ) = (-∞ ) * r = +∞
∀ r ∈ R−¿0
¿

r r 0
= =∀ r ∈ R
+ ∞ −∞
+∞ +∞
=¿
r
∀ r ∈ R+¿¿
0
−∞ -∞
=¿
r
+¿¿
∀ r ∈ R0

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
hannevanlandeghem
Follow You need to be logged in order to follow users or courses
Sold
98
Member since
3 year
Number of followers
18
Documents
81
Last sold
1 day ago

3.7

12 reviews

5
5
4
1
3
4
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions