100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

[23-24] Business Intelligence & Business Analytics complete summary IM

Rating
5.0
(2)
Sold
28
Pages
88
Uploaded on
15-06-2022
Written in
2021/2022

A complete summary of the lecture slides, recorded videos, and live lectures. Passed the course with a 7.5 by only studying this summary.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 15, 2022
Number of pages
88
Written in
2021/2022
Type
Summary

Subjects

Content preview

Summary
Business Intelligence &
Business Analytics

,Table of Contents
1. Week 1 lecture 1: Introduction to Data Management & Business Intelligence .................................. 1
1.1. Course introduction...................................................................................................................... 1
1.2. Introduction to Business Intelligence / Analytics ......................................................................... 2
1.3. Introduction to Databases ............................................................................................................ 4
1.4. Relational database ...................................................................................................................... 5
1.5. Week 1: Book materials................................................................................................................ 7
2. Week 1 lecture 2: Introduction to data warehousing ......................................................................... 9
3. Week 2 lecture 3: ETL, OLAP business databases & business dashboards ....................................... 20
4. Week 3 lecture 4: Data Mining Introduction..................................................................................... 29
4.1. Data Mining Intro ....................................................................................................................... 29
4.2. Data Mining Process(es): overview of the steps involved in data mining.................................. 30
5. Week 3 lecture 5: Regression models ............................................................................................... 34
EXTRA: Intro to Dataframes and Pandas ............................................................................................... 36
6. Week 4 lecture 6: Naïve Bayes Classifier........................................................................................... 37
7. Week 4 lecture 7: k-Nearest Neighbors Classifier ............................................................................. 40
8. Week 4 lecture 8: Performance Measures ........................................................................................ 43
8.1. Evaluating Predictive Performance: numerical (continuous) variables ..................................... 45
8.2. Judging Classifier Performance: categorical variables ............................................................... 46
8.3. Precision and recall..................................................................................................................... 50
9. Week 5 lecture 9: Decision trees ....................................................................................................... 53
10. Week 5 lecture 10: Association rules .............................................................................................. 58
10.1. Generation of frequent itemsets & selecting the strong rules ................................................ 59
11. Week 6 lecture 11: Clustering ......................................................................................................... 64
11.1. Hierarchical clustering .............................................................................................................. 67
11.2. Partitional clustering (k-means for this course) ....................................................................... 69
12. Week 7 lecture 12: Neural Networks .............................................................................................. 73
Quiz questions ....................................................................................................................................... 79
Quiz answers ......................................................................................................................................... 86
Notes ......................................................................................................... Error! Bookmark not defined.

,1. Week 1 lecture 1: Introduction to Data Management & Business
Intelligence

1.1. Course introduction
Data management: “managing data as a valuable
resource.”
Business intelligence (BI) / analytics (BA)?: “data-
driven decision-making”. Transforming data into
meaningful information/knowledge to support
business decision-making.

3 concepts of BI & BA:
Data: items that are the most elementary
descriptions of things, events, activities, and
transactions. Can be internal, external, structured,
unstructured.
Information: organized data that has meaning and value.
Knowledge: processed data or information that is applicable to a business decision problem.




Descriptive analytics: use data to understand past & present.
Diagnostic analytics: explain why something happened.
Predictive analytics: predict future behaviour based on past performance.
Prescriptive analytics: make decisions or recommendations to achieve the best performance.




1

, 1.2. Introduction to Business Intelligence / Analytics
General view definitions:
• Business intelligence: data warehousing + descriptive analytics.
• Business analytics: predictive + prescriptive analytics.

Our view in this course: BI = BA. They are all decision support systems (DSS).

2 definitions of BI:
• Process view (Sharba, 2014): “BI is an umbrella term that combines the processes,
technologies, and tools needed to transform data into information, information into
knowledge, and knowledge into plans that drive profitable business action.”
• Product/output view (Shaberwal, 2011): “BI is information and knowledge that enables
business decision-making.”

BI product, process, solution, and tools:




2
$7.18
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all 2 reviews
2 year ago

2 year ago

It follows the slides very well and is clear and comprehensive.

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
IMstudentTiU2122 Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
182
Member since
3 year
Number of followers
94
Documents
11
Last sold
1 month ago

3.7

13 reviews

5
5
4
4
3
1
2
1
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions