100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Statistik für Wirtschaftsinformatiker

Rating
-
Sold
-
Pages
21
Uploaded on
04-06-2022
Written in
2021/2022

Statistik für Wirtschaftsinformatiker

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 4, 2022
Number of pages
21
Written in
2021/2022
Type
Class notes
Professor(s)
Gerhard müller
Contains
All classes

Subjects

Content preview

Statistik / Teil V: Prognoseverfahren 138
Übersicht



Teil IV: Prognoseverfahren

9. Regressionsanalyse
9.1. Einfaches lineares Regressionsmodell
9.2. Einfaches nichtlineares Regressionsmodell
9.3. Multiples lineares Regressionsmodell


10. Zeitreihenanalyse
10.1. Komponenten einer Zeitreihe und ihre Modellierung
10.2. Ermittlung der glatten Komponente
10.3. Ermittlung der Saisonkomponente
10.4. Prognose von Zeitreihenwerten



Aufgaben und Lösungen zu Teil V

,Statistik / Teil V: Prognoseverfahren 139
9. Regressionsanalyse


9. Regressionsanalyse

Während bei der Korrelationsrechnung die Stärke des linearen Zusammenhangs zwischen
zwei Merkmalen untersucht wurde, wird bei der Regressionsrechnung ein funktionaler Zusam-
menhang zwischen dem Merkmal Y als abhängige und dem Merkmal X als unabhängige
Variable bestimmt. Dabei bedarf der Zusammenhang zwischen beiden Merkmalen, die grund-
sätzlich auch metrisch skaliert sein müssen, zuallererst einer theoretisch fundierten Annahme.
Der unterstellte Zusammenhang ist also vorab sachlogisch zu begründen.

Ist dieser funktionale Zusammenhang zwischen X und Y bestimmt und sind die Koeffizienten
dieser Funktion aus dem vorliegenden Datenmaterial geschätzt, dann lassen sich mit Hilfe
dieser Regressionsfunktion für beliebige Ausprägungen des Merkmals X die zu erwartenden
Werte der abhängigen Variablen Y berechnen. In Erweiterung der Korrelationsanalysen ist es
hier also möglich, unter Vorgabe eines konkreten X-Wertes einen Prognosewert für die Y-
Variable zu berechnen. Zu beachten ist allerdings, dass die Genauigkeit dieser Schätzung
umso stärker abnimmt, je weiter die Ausprägungen des Merkmals X vom Intervall der tat-
sächlichen Beobachtungswerte (Stützzeitraum) entfernt liegen. Im Sinne einer seriösen
Schätzung sollte daher darauf geachtet werden, dass der für die X-Variable vorgegebene Wert
nicht zu stark von diesem Stützzeitraum abweicht.

Aus den Optionen, dass eine X-Variable oder auch mehrere X-Variablen zur Beschreibung
des Einflusses auf die Y-Variable herangezogen und lineare oder nichtlinearer Zusammen-
hänge zwischen den X- und der Y-Variablen unterstellt werden können, ergeben sich verschie-
dene Modellansätze. Diese sollen in den nachfolgenden Abschnitten vorgestellt werden.

Analog zum bisherigen Procedere sollen auch hier Datensätze zur Jugendherberge verwendet
werden, um die vorgestellten Verfahren zumindest fallweise zu konkretisieren.
Standen in den letzten Kapiteln vor allem Daten zur Kundenanalyse im Mittelpunkt, so soll
nachfolgend auf Zeitreihen zur Markt- und Konkurrenzanalyse zurückgegriffen werden. Hierzu
sind in der nachfolgenden Tabelle 6 über einen Zeitraum von 2004 bis 2019 die jährlichen
Übernachtungszahlen dieser Jugendherberge (ÜZ_JH), der Tourismusindex für Gesamt-
deutschland (TI_D), für deutsche Gemeinden zwischen 10000 und 20000 Einwohnern
(TI_G1020) und für die deutschen Jugendherbergen zusammen (TI_DJH) erfasst, darüber
hinaus das jährliche Budget für Marketingausgaben der Jugendherberge selbst (MA_JH). Es
bedarf in diesem Fall sicher keiner weiteren Ausführungen, dass die in diesen Indizes erfasste
Geschäftssituation im Tourismusgewerbe einen (positiven) Einfluss auf die Übernachtungs-
zahlen der Jugendherberge haben könnte. In besonderer Weise sollte dies natürlich für das
verausgabte Werbebudget und den Tourismusindex für kleinere Gemeinden gelten, da die
Jugendherberge in einer Gemeinde dieser Größenordnung liegt.

, Statistik / Teil V: Prognoseverfahren 140
9. Regressionsanalyse



Tabelle 6
Indikatoren zur Tourismusentwicklung von 2004 bis 2019

ÜZ_JH TI_D TI_G1020 TI_DJH MA_JH
Jahr in 1000 in Prozent in Prozent in Prozent in TEUR
2004 15,1 100,0 100,0 100,0 9
2005 14,9 100,0 100,1 97,9 10
2006 14,6 97,4 97,5 98,8 6
2007 15,1 97,4 98,8 100,5 8
2008 15,7 97,5 100,9 102,1 8
2009 16,0 98,9 100,5 107,2 9
2010 16,4 101,1 101,7 109,4 7
2011 14,9 104,1 103,0 110,6 12
2012 16,1 106,3 104,6 115,8 6
2013 16,8 106,0 111,9 122,8 10
2014 17,1 109,4 110,7 125,3 12
2015 16,0 113,1 115,3 122,6 8
2016 16,2 117,1 118,3 126,2 12
2017 16,4 118,5 115,7 129,1 11
2018 16,8 122,0 118,0 135,0 8
2019 17,2 125,5 118,2 140,0 6




9.1. Einfaches lineares Regressionsmodell

Die einfachste Modellvariante unterstellt einen linearen Zusammenhang, der durch die Re-
gressionsgerade

Ŷ = a0 + a1 ∙ X

beschrieben wird. Ob die Annahme eines linearen Funktionstyps der Realität tatsächlich ge-
recht wird, lässt sich neben den oben bereits angesprochenen sachlogischen Überlegungen
auch anhand des bereits bekannten Streudiagramms beurteilen.

Schätzung der linearen Regressionsfunktion

Würden alle Wertepaare in einem Streudiagramm auf einer Geraden liegen, könnten die
Koeffizienten der Regressionsgeraden direkt hieraus bestimmt werden. Insbesondere ökono-
mische Variablen weichen von diesem Idealfall mehr oder weniger stark ab, was beispielhaft
im Streudiagramm der beiden Merkmale 'Tourismusindex von Gemeinden zwischen 10000
und 20000 Einwohnern (TI_G1020)' und 'Übernachtungszahlen der Jugendherberge (ÜZ_JH)'
sichtbar wird:
$7.88
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
valeriyamakarova

Get to know the seller

Seller avatar
valeriyamakarova Hochschule Wismar
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
6
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions