MAT1510
PRECALCULUS MATHS
2022
, MAT1510
PRECALCULUSMATHS1
Jan-Feb
2022Solutions
QUESTION1
Givenf (x) = |1−3x|
1
andg (x) = log 1 ( 3x−2
1
) − log 3 x
3
1.1 Df andDg
Consideringf (x), thefunctionexistwhen
1 − 3x ≠0 ⇒x ≠ 31 [a function
is undefined
when divided
zero,
by so
the
denominator
in
f(x) cannot
be
zero
].
Considering g (x) ,wecanre-writethefunctionas,
g (x) = log 1 (3x − 2)−1 − log 3 x =− log 1 (3x − 2)− log 3 x .Thisfunctionvalidif
3 3
3x − 2 > 0 ⇒x > 2
3 andifx > 0 combiningthetwo,wehavex > 2
3
Df (Domainofthefunctionf(x))x : x ∈R, x ≠ 1
3
Dg (Domainofthefunctiong(x))x : x ∈R, x > 2
3
1.2 f (x) > 2
2 1
|1−3x| >2
If1 − 3x isgreaterthanzero,then|( 1 − 3x )|= 1 − 3x ,hence
1
1−3x >2
1 > 2 (1 − 3x)
1 > 2 − 6x
6x > 1
1
x> 6
If1 − 3x islessthanzero,then|( 1 − 3x )|= − (1 − 3x ),hence
1
−(1−3x) >2
1
3x−1 >2
1 > 2 (3x − 1)
1 > 6x − 2
PRECALCULUS MATHS
2022
, MAT1510
PRECALCULUSMATHS1
Jan-Feb
2022Solutions
QUESTION1
Givenf (x) = |1−3x|
1
andg (x) = log 1 ( 3x−2
1
) − log 3 x
3
1.1 Df andDg
Consideringf (x), thefunctionexistwhen
1 − 3x ≠0 ⇒x ≠ 31 [a function
is undefined
when divided
zero,
by so
the
denominator
in
f(x) cannot
be
zero
].
Considering g (x) ,wecanre-writethefunctionas,
g (x) = log 1 (3x − 2)−1 − log 3 x =− log 1 (3x − 2)− log 3 x .Thisfunctionvalidif
3 3
3x − 2 > 0 ⇒x > 2
3 andifx > 0 combiningthetwo,wehavex > 2
3
Df (Domainofthefunctionf(x))x : x ∈R, x ≠ 1
3
Dg (Domainofthefunctiong(x))x : x ∈R, x > 2
3
1.2 f (x) > 2
2 1
|1−3x| >2
If1 − 3x isgreaterthanzero,then|( 1 − 3x )|= 1 − 3x ,hence
1
1−3x >2
1 > 2 (1 − 3x)
1 > 2 − 6x
6x > 1
1
x> 6
If1 − 3x islessthanzero,then|( 1 − 3x )|= − (1 − 3x ),hence
1
−(1−3x) >2
1
3x−1 >2
1 > 2 (3x − 1)
1 > 6x − 2