100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Trillingen En Golven (YI1373)

Rating
-
Sold
6
Pages
48
Uploaded on
26-05-2022
Written in
2020/2021

Alles wat gezien is in de les op campus de nayer

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 26, 2022
Number of pages
48
Written in
2020/2021
Type
Summary

Subjects

Content preview

Trillingen en golven

Hoofdstuk 1: Trillingen
Hoofdstuk 2: Golven
Hoofdstuk 3: Geluid
Hoofdstuk 4: EM golven
Hoofdstuk 5: Interferentie
Hoofdstuk 6: Buiging
Hoofdstuk 7: Warmtestraling en fotonen

,Hoofdstuk 1: Trillingen
= periodieke bewegingen rondom een evenwichtstoestand
―> kan voorkomen als zaag- , blokfunctie of sinus / cosinus
Harmonische beweging: Zal ontstaan al een netto terugdrijvende kracht recht evenredig is met de negatieve waarde van de uitwijking.
= sinusoïdale of cosinusoïdale beweging
Wat zou de reden kunnen zijn waarom we focussen op de harmonische beweging?
- veel dingen worden beschreven met behulp van sinussen en cosinussen
- makkelijk te beschrijven
- gelijk welke trilling kan je beschrijven als een sinus of cosinus via Fourier analyse
(= optellen/aftrekken sinus en cosinus)
Toepassing “palen stil de grond in getrild” ―> bv in de zee, daar wordt het volledige zee leven verstoort door trillingen.
Oplossingen: onder aan de paal zit een component dat trilt, hierdoor komt de grond los en is er geen hei machine meer
nodig!




X(t) = A sin( ωt + α ) plaats
A = amplitude ―> uitrekken van de veer (harder of minder hard trekken veer)

ω = cirkelfrequentie
t = tijd
α = beginfase, waar dat bv. de sinus begint ―> moment dat je op de chronometer drukt
( ωt + α ) = fase
Afleiden van de periode:
ω t2 + α = ω t1 + α + 2π
ω t2 = ω t1 + 2π
t2 - t1 = 2π/ω
P = T = 2π/ω = periode (s) f = ω/ 2π = frequentie (Hz)


Eén cyclus van een harmonische beweging
uitgedrukt in radialen: 2π
uitgedrukt in seconden: P



Hoe verander ik de periode of frequentie van een massa-veer systeem in de praktijk?
―> Een andere massa nemen.
De snelheid v(t):
v(t) = dx/dt
= Aω cos( ωt + α )
vmax = Aω
2
De versnelling a(t):
a(t) = dv/dt

:
= - Aω sin( ωt + α )
=-ωx
2
amax = Aω

, Vb. 9.4
Gegeven: f = 262 Hz , A = 1,5 * 10 m , x(t=0) = A
Gevraagd: vmax, amax
Oplossing:
vmax = Aω = A 2π f = 0,25 m/s = 0,9 km/u
2 2
amax = Aω = 410 m/s > 40g




1.



2.



1. 1. Waar kracht is 0.
2. Waar kracht maximaal is.
Hardste terugtrekken/duwen veer.




Terugroepkracht:
= kracht uitgeoefend door de veer op de massa




x = positief, F = negatief
De vergelijking voor F(x)?
F = -k x met k = de veerconstante
x = A sin(ωt + α)
Hoe kan dit juist zijn als je weet dat x een sinusfunctie is?
―> met behulp van de assen.
2 2
F = ma = - mω x = - kx ―> ω = k/m
Energie van de harmonische beweging:
E ^
Hoe verandert deze grafiek als functie van de tijd als er wrijving is?
De groene lijn zalt als functie van de tijd in zijn geheel naar beneden
en wordt korter ―> amplitude kleiner en snelheid zal ook zakken en
korter worden omdat het systeem stil valt.


v2 >X
Kinetische energie: Ek max bij x=0
M .




=

2


Potentiële energie: Ep =
m.ro
'

2
.
x2
max bij maximale uitwijking Ep = - fFdx =f kx dx
Totale energie: E- Ekt Ep
-

, Dynamica van de harmonische beweging:
Bepaal de plaats x als functie van de tijd voor een massa bevestigd aan een veer met een
constante k.




Ieder trillend systeem, waarvoor geldt dat de netto terugdrijvende kracht recht evenredig is
met de negatieve waarde van de uitwijking voert een harmonische beweging uit!




De enkelvoudige slinger:
Ideaal systeem:
- geen wrijving
- massaloos touw
- onvervormbaar touw
- puntmassaʼs
Is dit een harmonische beweging? ( = is er een terugroepkracht? )
Ja, bij kleine hoeken. Er is nood aan een terugroepkracht = zwaartekracht ontbinden
Een slinger heeft een harmonische beweging als we m*g*sin O mogen herschrijven als
-




m*g*O, O mag niet te groot zijn (max 30 )
- -




2
a =v/R
m

2
2-
a = dv / dt = r d 0 / dt
t




De frequentie van de slinger is onafhankelijk van de massa van
het object. De frequentie is enkel afhankelijk van de lengte van
de slinger. Hoe korter de slinger hoe sneller de frequentie
r



>




Hoe groter de hoek van de max amplitude hoe groter de afwijking van de ideale amplitude P 0


Daarom is er een maximum hoek van 30 anders klopt de basis formule niet meer.


Periode
Periode van 0




-

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Studymotivation Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
89
Member since
3 year
Number of followers
38
Documents
18
Last sold
5 days ago

4.2

5 reviews

5
1
4
4
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions