100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Apuntes Matemáticas I (P02G120V01304)

Rating
-
Sold
-
Pages
7
Uploaded on
17-05-2022
Written in
2021/2022

Conceptos previos de matemáticas

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 17, 2022
Number of pages
7
Written in
2021/2022
Type
Class notes
Professor(s)
Marta perez
Contains
All classes

Subjects

Content preview

Matemáticas y su didáctica I
Curso 2021/22

NÚMEROS Y OPERACIONES: CONCEPTOS PREVIOS


1. Razonamiento matemático
1.1. Razonamiento inductivo. El razonamiento inductivo nos sirve para crear
y organizar información. Consiste en llegar a una conclusión basada en la evidencia
obtenida sobre ejemplos concretos, la conclusión se llama generalización.
Para demostrar que una generalización es cierta, requiere que demostremos que
una cierta propiedad es válida para todos los casos posibles, pero una generalización
puede demostrarse que es falsa si encontramos solo un contraejemplo.
Ejemplo 1.1.1. Piensa en la imagen de un oso, nuestra experiencia en documenta-
les, fotografías o zoológicos nos hace llegar a la conclusión que un oso es color negro,
marrón o incluso blanco. Sin embargo, existe un tipo de oso, el Glacier bear, que
es gris azulado y entonces existe un contraejemplo a la imagen del oso creada por
nuestras experiencias.
Desde etapas tempranas, se debe motivar a los estudiantes a razonar. Muchos
estudiantes creen que algo es cierto porque ha ocurrido antes, porque han visto
diversos ejemplos de ello o porque la propia experiencia hasta la fecha parece con-
firmarlo. Se debe aprender que, considerar una variedad de ejemplos no es suficiente
para establecer la verdad de una conjetura y que pueden existir contraejemplos
para refutar dicha conjetura. Cuando tenemos una variedad de ejemplos, se debe
aprender que podemos razonar sobre las propiedades de estos y sus relaciones entre
ellos.
Ejercicio 1.1.2. Considerar un círculo y por su borde (circunferencia) n puntos.
Unir cada par de estos puntos con un segmento de línea (cuerda), de tal manera que
no más de dos cuerdas se crucen en un solo punto, como muestra la Figura 1 :

Figura 1: Ejercicio de razonamiento inductivo




En conclusión, probablemente es cierto que hay 2n−1 regiones creando cuerdas
entre n puntos sobre un círculo. ¿Será cierta esta generalización?
1

, 2 NÚMEROS Y OPERACIONES: CONCEPTOS PREVIOS

Si crees que la generalización es válida intenta dar razones adicionales, si crees
que la generalización es falsa busca un contraejemplo.
n 2n−1 Regiones
1 20 1
1
2 2 2
3 22 4
Estrategias para usar el razonamiento inductivo:
1. Observa que la propiedad se verifique en algunos ejemplos.
2. Comprueba que la propiedad se verifica en más ejemplos. Además, intenta
encontrar un ejemplo para el cual la propiedad no se verifique (contraejemplo).
3. Si dicha propiedad se cumple para todos los ejemplos, esta propiedad es pro-
bablemente cierta en general.
1.2. Razonamiento mediante representaciones. Una representación es un
objeto que captura la información esencial que se necesita para entender y comuni-
car propiedades matemáticas y sus relaciones. Con frecuencia, esta representación
transmite información visual en forma de: gráficas, diagramas, mapas, tablas, etc.
También, esta representación es simbólica y así, una letra por ejemplo denota una
variable, una expresión algebraica o una ecuación. Asimismo, estas representaciones
pueden ser objetos físicos: cubos, palitos, etc.
Ejemplo 1.2.1. Todo número al cuadrado puede representarse como un cuadrado
de patrones de puntos:

Figura 2: Representación del cuadrado de un número




Ejercicio 1.2.2. Considera las siguientes sumas piramidales:
1=1
1+2+1=4
1+2+3+2+1=9
1 + 2 + 3 + 4 + 3 + 2 + 1 = 16
Podríamos concluir que la n-ésima suma piramidal es n2 . Representa la conclusión:
1 + 2 + 3 + · · · + (n − 1) + n + (n − 1) + · · · + 3 + 2 + 1 = n2
1.3. Proposiciones matemáticas. En matemáticas, una proposición es una
oración declarativa que es verdadera o falsa, pero no ambas cosas a la vez
Ejemplo 1.3.1. Son proposiciones:
• Pontevedra es una provincia de Galicia
• 1 − 100 = 99
$7.87
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
maragarcía1

Get to know the seller

Seller avatar
maragarcía1 Universidade de Vigo
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
20
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions