100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Summary Statistics 2

Rating
-
Sold
8
Pages
33
Uploaded on
16-05-2022
Written in
2021/2022

This summary covers a recapitulation of Statistics 1 and covers the whole course of Statistics 2. Besides explanation of the topics, this summary also contains examples of statistical experiments and dives deep into explaining data interpretation. The statistical jargon/terminology needed to understand statistics are also explained clearly in this summary. This is perfect for when you went into the statistics 2 course with little to no prior knowledge on statistics. Figures and tables are used to support the summary and to give you a better visual insight on how to interperted statistical data.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 16, 2022
File latest updated on
June 21, 2022
Number of pages
33
Written in
2021/2022
Type
Summary

Subjects

Content preview

Statistics

Content
1. Recapitulation ..................................................................................................................................... 3
How to choose the correct statistical test: ......................................................................................... 3
How to look at data: ............................................................................................................................ 4
Effect size......................................................................................................................................... 4
X² test .............................................................................................................................................. 4
Linear regression R² ......................................................................................................................... 5
Student’s T-test ............................................................................................................................... 5
2. Two-way ANOVA ................................................................................................................................. 6
How does it work? ............................................................................................................................... 6
Interaction effect ............................................................................................................................. 6
Hypothesis: H0 and Ha ...................................................................................................................... 7
Assumptions of the two-way ANOVA.................................................................................................. 7
Factorial design ................................................................................................................................... 8
General linear model: ...................................................................................................................... 8
Total and residual Variance ............................................................................................................. 9
Degrees of freedom....................................................................................................................... 10
Planned comparison and contrasts ............................................................................................... 10
Orthogonal contrasts..................................................................................................................... 11
Standard error of contrasts ........................................................................................................... 11
Increase statistical power .............................................................................................................. 12
Types of contrast ........................................................................................................................... 12
How to interpret the results.............................................................................................................. 13
3. Multiple linear regression ................................................................................................................. 15
How does it work? ............................................................................................................................. 16
Assumptions of multiple linear regression........................................................................................ 16
Multiple regression design ................................................................................................................ 17
Dummy variables ........................................................................................................................... 17
Selection process ........................................................................................................................... 17
Model summary ............................................................................................................................ 17
Anova table of multiple linear regression ..................................................................................... 18
How to interpret the results.............................................................................................................. 18
Unstandardized regression coefficients ........................................................................................ 18
Collinearity and variance inflation................................................................................................. 19


1

, Stepwise regression: entering predictors...................................................................................... 19
Backward elemination ................................................................................................................... 21
Forward selection .......................................................................................................................... 21
4. Power analysis and sample size determination ................................................................................ 21
B.E.A.N.S ............................................................................................................................................ 21
β, Type-2 error probability ............................................................................................................ 22
Effect size....................................................................................................................................... 22
α significance level, type-1 error ................................................................................................... 23
n; sample size ................................................................................................................................ 24
S, Standard deviation, variability, σ............................................................................................... 24
Increasing statistical power ............................................................................................................... 24
5. Bayesian inference ............................................................................................................................ 25
Null hypothesis testing ...................................................................................................................... 25
Bayesian hypothesis testing .............................................................................................................. 25
Priors in Bayesian analysis ................................................................................................................. 26
How to interpreted the results.......................................................................................................... 27
Bayes factor ................................................................................................................................... 27
Using a priori belief ....................................................................................................................... 27
Beta distribution 𝐵(𝛼, 𝛽) ............................................................................................................... 29
6. Meta-analysis .................................................................................................................................... 30
Funnel plots ....................................................................................................................................... 30
Forest plots ........................................................................................................................................ 31
Heterogeneity.................................................................................................................................... 32
Meta-analysis in steps ....................................................................................................................... 33




2

, 1. Recapitulation
How to choose the correct statistical test:




The independent variable is the cause. Its value is independent of other variables in your study.
The dependent variable is the effect. Its value depends on changes in the independent variable.

Qualitative research is expressed in words. It is used to understand concepts, thoughts or
experiences. This type of research enables you to gather in-depth insights on topics that are not well
understood.

Nominal data is labelled into mutually exclusive categories within a variable. These
categories cannot be ordered in a meaningful way. Like way of transport: bus, train, bike, car.

Ordinal data is classified into categories within a variable that have a natural rank order.
However, the distances between the categories are uneven or unknown. For example, the
variable “frequency of physical exercise” can be categorized into the following:

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always


Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and
assumptions. This type of research can be used to establish generalizable facts about a topic.

Discrete variables represent counts (e.g. the number of objects you count in a variable).

Continuous variables represent measurable amounts (e.g. water volume or weight)




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
StephSilentium Radboud Universiteit Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
67
Member since
4 year
Number of followers
39
Documents
8
Last sold
2 weeks ago

4.1

10 reviews

5
4
4
4
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions