100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary ADS notes

Rating
-
Sold
-
Pages
24
Uploaded on
06-05-2022
Written in
2020/2021

Notes based on slides and the book for the exams and to understand the theory. Very useful for the analysis exam

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
3-11, some 12
Uploaded on
May 6, 2022
Number of pages
24
Written in
2020/2021
Type
Summary

Subjects

Content preview

Algorithms & Data Structures

1. Complexity Analysis
Efficiency of an algorithm, measured by 2 elements:
 Time complexity - amount of time it takes for a given algorithm to execute
 Space complexity - mount of space a given algorithm uses at most during
execution


Empirical time analysis
Analysis method for time complexity - roughly equivalent to a brute force approach
when programming or a proof by exhaustion for Reasoning and Logic: execute and
measure the time:
long startTime = System.currentTimeMillis(); // record the
starting time
/* (run the algorithm) */
long endTime = System.currentTimeMillis(); // record the ending
time
long elapsed = endTime - startTime; // calculate the
elapsed time


Problems:
 Results may differ when different hardware / compiler / OS / etc. are used
 Experiments are restricted to a limited set of inputs
 Requires a full implementation of the algorithm
 A compiler may optimize your code or require a warm up time.


Theoretical complexity analysis for time
Way to analyse the efficiency of an algorithm without having to run additional code,
don’t need to execute your algorithm to analyse it.
Primitive operations are operations that have a run time of 1:
- Assigning a value to a variable
- Performing an arithmetic operation
- Comparing two numbers (and no more than two)
- Accessing a single element of an array by index
- Calling and returning from a method


Assign a mathematical function to the algorithm that describes the running time.
T algorithm ( n )=number of primitive operations performed for an input size n

,To set up T algorithm ( n ):
1. State the size of the problem n - length of an array.
2. Simplify the program to only using primitive operations (optional).
3. Express the running time by counting operations.
! Note: when expressing the running time, we consider the worst-case of our problem
n.
! Note: a + only represents an arithmetic operation when applied to numbers.


Theoretical complexity analysis for space
Space used can go down, while time cannot. Count the number of stack frames
used.
Salgorithm ( n )=maximum amount of memory needed at any point in the algorithm for an input size n

A stack frame is added or pushed onto the stack when a method is called and is only
removed or popped off the stack when you return from the method. With recursive
method it is possible to have multiple stack frames on the stack at once.


Big O Proof
f ( n ) is O ( g ( n ) ) if f ( n ) ≤ c∗g ( n ) , c ≥ 0 , n0 ≥n



2. Asymptotic growth comparison

The following functions are from ‘best’ asymptotic growth to ’worst’:
1. Constant: f ( n )=c
2. Logarithmic: f ( n )=log ⁡(n)
3. Linear: f ( n )=n
4. Linearithmic (n-log-n): f ( n )=n log ⁡(n)
5. Quadratic: f ( n )=n2
6. Cubic: f ( n )=n3
7. Polynomials: f ( n )=n a
8. Factorial: f ( n )=n !
9. Exponential: f ( n )=e n
10. Worst ever: f ( n )=n n

, 3. Often used tricks

Gauss's sum identity:

n
n(n+1)
∑ i=1+ 2+ 3+…+n= 2
i=1


Geometric sum:

a1 ( 1−r )
m m

∑ ai=1+a+ a2 +…+ an= 1−r
, r ≠1
i=0


where:
o m is the number of terms, in this case n
o a 1 is the first term, in this case 1
o r is the constant that each term is multiplied by to get the next
term, in this case a
Particular geometric series:
n

∑ 2i =2n+1−1
i=0




4. Finding time complexity of a recursive algorithm

1. State / define the size of the input n
2. State the recurrence equation by counting operations. The exact amount of
operations shouldn’t be counted, that depends on the hardware, compiler, etc.
It is more about counting loops, etc. Specific operations can be replaced by a
constant, often called c xwhere x is a number
3. Create a form of this recurrence equation where there is no T(n) in the
equation anymore. There are 2 methods to do so:
a. Making an educated guess and then proving this (by induction)
b. Unfolding the equation and then create a final equation based on that
4. Determine the complexity in Big O notation
5. Prove the complexity in Big O notation




5. Arrays
$9.67
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
randomgirl

Get to know the seller

Seller avatar
randomgirl Technische Universiteit Delft
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions