100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Statistics II: Applied Quantitative Analysis SPSS Exam Cheat Sheet - GRADE 8,7

Rating
4.9
(8)
Sold
12
Pages
35
Uploaded on
23-03-2022
Written in
2021/2022

Summary of the material for the final SPSS exam (2022) for Statistics II: Applied Quantitative Analysis. INCLUDES a cheat sheet of the course’s general information, SPSS commands and functions (Total: 35 pages).

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 23, 2022
File latest updated on
June 15, 2022
Number of pages
35
Written in
2021/2022
Type
Class notes
Professor(s)
Dr. joshua robinson
Contains
All classes

Subjects

Content preview

Summary of the material for the final SPSS exam (2022) for Statistics II: Applied Quantitative
Analysis. INCLUDES a cheat sheet of the course’s general information, SPSS commands and
functions (Total: 35 pages).
1


Statistics II: Applied Quantitative Analysis SPSS Exam Cheat Sheet


Table of Contents

General 2

Bivariate Linear (OLS) Regression 5

Multiple (Multivariate) Linear (OLS) Regression 6

Hierarchical Regression 8

OLS Model Assumptions 9

Moderation/Interaction Terms 14

Outliers/Influential Cases 15

Logistic (MLE) Regression 17

Logistic Model Assumptions 21

Other Logistic Regressions (NOT on SPSS - Just for Reference) 23

SPSS Codes/Methods, Interpretations and Calculations by Hand 24

, 2


General
Variables in Models:
1. Dependent Variable (DV): The variable we want to predict/explain/understand (i.e.
outcome variable, Y).
2. Independent Variable (DV): The variable we are using to predict/explain the outcome (i.e.
predictor variable, X).


Statistical Models:
1. Ordinary Least Squares (OLS): Models continuous (scale) DVs, with a variety of different
IVs.
2. Logit Models: Models binary (two) outcome variables.
3. Multinomial and Ordered/Ordinal Logit Models: Models categorical (multiple categories)
and ordinal dependent variables.


Interpretations:
1. Do NOT interpret the slope coefficient as saying something about the constant.
➔ The constant gives the mean value of the DV when X=0.
➔ The slope for an IV tells us how Y changes on average for each one-unit increase in
X.
2. Include statistics + p-value + significance.


Levels of Measurement:
● Categorical: Contain a finite number of categories or distinct groups.
1. Nominal:
■ 2+ exclusive categories, with NO natural order.
■ NO arithmetic operations are possible (subtraction or logical operations).
■ Can only talk about these categories in frequency (mode).
■ E.g. political party affiliation.
2. Ordinal:
■ Clear ordering of the values (e.g. small or larger).
■ Spacing between the values is NOT the same across levels.
■ Comparison is possible, but only relative.
■ E.g. level of agreement.
■ IMPORTANT: If there is an ordinal variable choose between treating it as:
● Categorical (if told: “treat the variable as ‘ordinal’”):
○ Pick a category to serve as the reference/baseline and enter
dummy variables for the other categories.
○ Advantage = does NOT require any supplemental assumptions
to interpret the coefficients and is therefore easy to justify
(difference in means test).
○ Disadvantage = information about the variable is discarded
(i.e. it’s ordering), which can be more difficult to show and
discuss.
● Continuous (if told: “treat the variable as ‘interval/ratio’”):
○ Same interpretation as the continuous predictor.
○ Advantages = retains the ordering information, easy to
interpret and in nearly all cases does NOT affect conclusions
because the relationships are approximately linear enough.
○ Disadvantages = assumption can fail (inaccurate assessment),

, 3


and the assumption that each increment in X is equally spaced
is forced to be made, which may be more controversial.

● Continuous: Numeric variables that have an infinite number of values between any two
values (i.e. the difference = meaningful).
➔ Variables can be continuous, OR discrete:
◆ “Continuous”: Measured to any level of precision (e.g. height can be
measured to any value).
◆ “Discrete”: Only takes certain, countable values, usually whole numbers
(e.g. points in an exam).
➔ Interval/ratio variables are categorised together in SPSS.
3. Interval:
■ 0 = arbitrary or meaningless.
■ E.g. a temperature of 0.0°C to °F does not mean ‘no heat’.
4. Ratio:
■ Like interval variables, but have a meaningful 0.
■ E.g. 0 Kelvin means no heat.


Data Cleaning/Descriptive Statistics:
1. Investigate variables.
2. For completeness always run a frequency table before.
➔ Creating a frequency table = Analyse → Descriptive Statistics → Frequencies
3. Always inspect how missing variables are coded.
4. Recode variables into dummies (do NOT forget SYSMIS and add value labels).
➔ (Transform → Recode into Different Variables), always ADD variable labels (e.g.
0=bicameral, 1=unicameral).
5. Look at SPSS’ output.


Minimum/Maximum Values (of the Sample):
● Finding = data view, right-click on the variable name and sort ascending/descending.
● When asked to determine the magnitude of a relationship → minimum and maximum
and compare.
● Predicting:
1. Write down the formula.
2. Determine the variable observed minimum and maximum.
3. Determine the mode/mean for other variables in the formula that remain constant.
4. Fill all values into the model.


Binary/Dichotomous/“Dummy”: Variables that can take on one of two variables (typically 0 or 1),
talks about a difference in means test.
➔ When analysing/recoding different types of variables:
◆ Categorical = use mode (when running dummy variables, exclude one category
from the analyses ⇒ becomes included in the constant).
● Constant represents the number if all X variables = 0 (i.e. excluded
category).
◆ Continuous = use means.

, 4


Creating Dummy Variables:
1. Create a series of binary or dummy variables for each category (1 = member of that
category, 0 = member of one of the other categories).
2. When choosing a reference category, considerations can be:
● Theoretical; choose the category most expected to deviate from the others.
● Practical; choose the category with a large number of observations.
➔ Do NOT use a category with few observations, as resulting estimates will
be imprecise.
3. Include all but one (the reference/baseline category) of these dummy variables in the
model, against which the others will be compared.
➔ Constant Term: The expected value of the DV when the IVs = 0. In a bivariate
model, the constant = the average for cases in the reference category (e.g. Labour).
➔ Coefficient for Categories: The difference in means between category and
reference group holding the remaining variables constant.


Statistical Significance:
● Statistical significance (precision) ≠ Substantive importance/significance (size).
➔ More data = less uncertainty (generally).
➔ A “null” effect can be practically/socially important.
● Null hypothesis = NO relationship; an increase in X does NOT = increase in Y (just a
straight line).


If you see: What it means: Write p-value as: Interpretation:

.000 p = 0.000… p < 0.001 Reject H0.

.001 p = 0.001 p <0.01 or p <0.05, depends on the threshold value. Reject H0.

< 0.001 0.0005 < p <0.001 p <0.001 Reject H0.

.061 p = 0.061 p = 0.061 or p <0.01 or p <0.05, depends on the Do NOT reject H0.
threshold value.


Missing Values:
1. System Missing (SYSMIS = SYSMIS): Data is missing in
the values boxes; a blank cell. Nothing needs to be done.
2. User-Defined Missing Variable (MISSING = SYSMIS): A
specific numeric value for missing data. Usually, holding
a negative/extreme value (look at the Values column in
SPSS or create a frequency table).

➔ CAUTION: Ensure variables are coded as a specific number (value label
column).
➔ Write if numbers were added to the Missing Column.
$11.98
Get access to the full document:
Purchased by 12 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing 7 of 8 reviews
3 year ago

3 year ago

Thanks for the review! Good luck with the exams!

3 year ago

3 year ago

3 year ago

Thank you for the review! I hope the notes helped.

3 year ago

3 year ago

Thanks for the review! I hope the notes helped.

3 year ago

3 year ago

Thank you! I hope the exams go well!

2 year ago

2 year ago

Thanks for the review!

2 year ago

You are welcome!

3 year ago

3 year ago

Thank you for the review! Good luck with the exams!

4.9

8 reviews

5
7
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
giacomoef Universiteit Leiden
Follow You need to be logged in order to follow users or courses
Sold
909
Member since
4 year
Number of followers
285
Documents
82
Last sold
1 day ago
Leiden University - IRO &amp; CSM Notes

Creating concise notes and study guides for the following Leiden University programmes: - International Relations and Organisations (BSc) - Crisis and Security Management (MSc) [Cyber Security Governance] *All the money made (except the 40% that Stuvia keeps) will be donated to MSF’s (Doctors Without Borders) Palestine fund.*

4.6

133 reviews

5
100
4
22
3
6
2
2
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions