100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

College notes Machine Learning for the quantified self (XM_40012)

Rating
-
Sold
9
Pages
40
Uploaded on
23-02-2022
Written in
2020/2021

All notes for the ML4QS box. Thanks to these notes, you don't have to watch a single slide/lecture just practice with old exams. Thanks to my notes, I got a 9.5 for the exam.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 23, 2022
Number of pages
40
Written in
2020/2021
Type
Class notes
Professor(s)
Mark hoogendoorn
Contains
All classes

Subjects

Content preview


Machine Learning for the quantified self
Created @May 30, 2021 10:31 PM

Class S6

Type

Materials



Lecture 1
Introduction, basics of sensory data
Here we collect data

introduction

Quantified self: any individual engaged in the self-tracking of any kind of biological, physical,
behavioral, or environmental information. The self-tracking is driven by a certain goal of the
individual with a desire to act upon the collected information. (→ goal oriented behaviour, for a
purpose)

type of measurements; physical activities, diet, psychological states and traits, environmental var.,
situational var., social var., mental and cognitive states and traits

purpose:




Machine Learning for the quantified self 1

, Machine learning

= automatically identify patterns from data

difference from other ML

sensory noise: we suffer from this, sometimes disabled, noisy, need good ways to
revenue this

missing measurements: also related to the noise, what do we do with large missing gaps

temporal data: order is in benefit, someone becomes better. temporal dimension is thus
important

interaction with user

learn over multiple datasets: people have different devices and different characteristics
how are you gonna learn over them

basic definitions and notation

we do measurements, this is one value for an attribute recorded ta a specific time point: heart
rate, activity level, speed, facebook post, activity type

ML terminology

supervised learning: ml task of inferring a function from a set of labeled training data

unsupervised learning: no target measurement (or label), you need to describe the
associations and patterns among the attributes

reinforcement learning: trying to find optimal actions in a given situation so as to maximize a
numerical reward that does not immediately come with the action but later in time

Mathematical notations:

variables for the features




Machine Learning for the quantified self 2

, the last x is small, Xit the t is indicating temporary variables
variables for the targets

mostly only one target, so k=1




and if the G has a hat: ∧ it means it is predicted target value. The G if we have categorical
prediction, and Y if we have numerical predictions
Example:




Machine Learning for the quantified self 3

, For the combination of all the given data from all sensor combined we need some
preprocessing....




most important parts is the preprocessing and identification of useful features → do machine
learning and use the valuable ML insights to have a feedback loop

sensory data
introduction to case study and basics of handling sensory data

We have different tables for different sensors. We need to combine these tables.

1. Select step size Δt you want to consider in the data

size depends on the situation




Machine Learning for the quantified self 4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
MeldaMalkoc Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
54
Member since
3 year
Number of followers
34
Documents
20
Last sold
5 months ago

3.3

7 reviews

5
2
4
1
3
2
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions