100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting alles van complexe analyse (holomorfe functies, Cauchy, residustelling, z-trans,...)

Rating
-
Sold
-
Pages
10
Uploaded on
17-02-2022
Written in
2021/2022

Alles komt relatief uitgebreid aan bod. Uitleg over Cauchy is vrij gedetailleerd ook de convergentiewijzen worden duidelijk geïllustreerd door middel van een tekening.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 17, 2022
File latest updated on
February 17, 2022
Number of pages
10
Written in
2021/2022
Type
Summary

Subjects

Content preview

Lijnintegraal van een complexe functie
5.2.2 Basisdefinitie en basiseigenschappen

f ( z )=w
w is een complex getal van de vorm: w=u+i ∙ v

z is een complex getal van de vorm: z=x +i∙ y

∫ f ( z ) dz=¿∫ f ( z ) dx +if ( z ) dy=∫ udx +i∫ vdx +i∫ udy−∫ vdy ¿
c c c c c c


C={z=γ ( t )=α ( t ) +iβ ( t ) ,t ∈ [ a , b ] }
(eerste stap lijkt wat raar als je erover nadenkt maar dit is gewoon de opsplitsing van z in x+iy)

Eigenlijk heeft het imaginaire lijnintegraal veel weg van 2D: stel z = [x,y] en w = [u,v] dan kunnen we
bovenstaande integraal ook als volgt noteren

∫ f ( z ) dz=∫ [ f ( z ) , if ( z ) ] ∙ d ⃗P
c c


Met d ⃗P de afgeleide van de parameterVGL d ⃗
P=[∂x ( ¿ ∂ C1 ) , ∂ y (¿ ∂ C 2)] omdat zowel in C1 als in C2
de parameter t voorkomt zullen we deze dan door middel van de kettingregel verder moeten
afleiden en deze wordt dan meestal afgezonderd en achterop gezwierd

Dit is momenteel de enige manier die ons in de mogelijkheid stelt om de integraal uit te rekenen
aangezien we geen andere manieren kennen om een complexe lijnintegraal op te lossen.

Een eenvoudigere manier om dit dan uit te rekenen vinden we als volgt:

z=γ (t ) en dz=γ ' (t) dt

∫ f ( z ) dz=∫ f (γ ( t )) ∙ γ ' ( t ) ∙ dt
c c

Volgende eigenschappen gelden bij complexe lijnintegralen:

∫ f ( z ) dz=∫ f ( z ) d z
c c


∫ f ( z ) dz=−∫ f ( z ) dz
−c c



|∫ f ( z ) dz|=≤∫|f ( z )|dz ≤ L❑ ∨f (z )∨¿ ¿

c
c c



met Lc = ∫ ds de lengt van de gladde kromme C
c

5.2.3 De complexe stelling van Green

Zoals voorheen reeds vermeld kunnen we het volgende stellen: f ( z )=u ( x , y )+ iv(x , y )

De stelling van green(vorige thema) zegt het volgende:

, ∫ ¿
∂ ⃗
+¿
G
dP=¿∫ (∂ x f 2−∂ y f 1 )dA ¿¿
F ∘⃗
G



Dit kunnen we ook perfect toepassen op complexe lijnintegralen. Want een lijnintegraal van een
complex functie zouden we kunnen zien als een vectorveld van 2 dimensies F = [u,v]

∫ ¿
c +¿ f ( z ) dz=¿2 i∫ ( ∂ f ) dA ¿¿
K



5.2.4 De formule van Pompeiu

1
f ( z0 ) =
2 πi
∫ ¿
f (z) 1 ∂ f (z )
dz− ∬
+¿
c ¿
z −z0 π K z−z0


Dit zorgt voor iets interessants namelijk dat wanneer de functie holomorf is dus ∂( f )=0 dan valt de
laatste term weg. Dat is de reden dat we in het volgende thema dieper ingaan op holomorfe functies

Holomorfe functies
6.1 Holomorfie

Een functie is holomorf als en slecht als aan volgende voorwaarden is voldaan:

 De functie is continu differentieerbaar in een gebied omega
 De Cauchy-Riemann operator van de functie is steeds gelijk aan 0: ∂ f =0∈Ω
 We noemen een functie geheel holomorf als Ω=C

De verzameling van de holomorfe functie is een vectorveld hieruit volgen enkele eigenschappen:

Stelling 6.1.2
z=x +iy
f =u ( x , y ) +i ∙ v (x , y )
Stel dan ⃗
F:

F =[u ( x , y ) ,−v ( x , y ) ]
Dan vinden we volgend verband:

∂ f =0 ⇔ f is holomorf ∈Ω⇔ ⃗
F iseen vectorveld dat voldoet aan het rieszstelsel

∂ f =0 ⇒
{ ∂ x u=∂ y v
∂ x v=−∂ y u

dit heten we het Cauchy-Riemann stelsel en dit kan ook worden gevonden door de voorwaarden van
F met ⃗
rotatievrij en divergentevrij op te stellen voor ⃗ F =[u( x , y),−v ( x , y)]
6.2 Complexe afgeleide

Een complexe functie is analytisch als en slecht als ze in heel haar bestaansgebied een afgeleide heeft
Een functie is pas analytisch als in Ω als en slechts als ze holomorf is in Ω en omgekeerd geld dus
ook.
$6.62
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Pietverstraete

Get to know the seller

Seller avatar
Pietverstraete Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
3
Member since
4 year
Number of followers
3
Documents
0
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions