100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Exam (elaborations) TEST BANK FOR Principles of Mathematical Analysis

Rating
-
Sold
-
Pages
387
Grade
A+
Uploaded on
13-02-2022
Written in
2021/2022

Exam of 387 pages for the course TEST BANK FOR Principles of Mathematical Analysis at UM (error)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 13, 2022
Number of pages
387
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

, A Complete Solution Guide to
Principles of Mathematical Analysis




by Kit-Wing Yu, PhD






Copyright c 2018 by Kit-Wing Yu. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the author.

ISBN: 978-988-78797-0-1 (eBook)
ISBN: 978-988-78797-1-8 (Paperback)

,List of Figures


2.1 The neighborhoods Nh (q) and Nr (p). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Convex sets and nonconvex sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 The sets Nh (x), N h (x) and Nqm (xk ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2
2.4 The construction of the shrinking sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The Cantor set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 The graph of g on [an , bn ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 The sets E and Ini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 The graphs of [x] and√(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 An example for α = 2 and n = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 The distance from x ∈ X to E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 The graph of a convex function f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 The positions of the points p, p + κ, q − κ and q. . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 The zig-zag path of the process in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 The zig-zag path induced by the function f in Case (i). . . . . . . . . . . . . . . . . . . . 108
5.3 The zig-zag path induced by the function g in Case (i). . . . . . . . . . . . . . . . . . . . 109
5.4 The zig-zag path induced by the function f in Case (ii). . . . . . . . . . . . . . . . . . . 109
5.5 The zig-zag path induced by the function g in Case (ii). . . . . . . . . . . . . . . . . . . 110
5.6 The geometrical interpretation of Newton’s method. . . . . . . . . . . . . . . . . . . . . . 111

8.1 The graph of the continuous function y = f (x) = (π − |x|)2 on [−π, π]. . . . . . . . . . . . 186
8.2 The graphs of the two functions f and g. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3 A geometric proof of 0 < sin x ≤ x on (0, π2 ]. . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.4 The graph of y = | sin x|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.5 The winding number of γ around an arbitrary point p. . . . . . . . . . . . . . . . . . . . . 202
8.6 The geometry of the points z, f (z) and g(z). . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.1 An example of the range K of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.2 The set of q ∈ K such that (∇f3 )(f −1 (q)) = 0. . . . . . . . . . . . . . . . . . . . . . . . . 220
9.3 Geometric meaning of the implicit function theorem. . . . . . . . . . . . . . . . . . . . . . 232
9.4 The graphs around the four points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
9.5 The graphs around (0, 0) and (1, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.6 The graph of the ellipse X 2 + 4Y 2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.7 The definition of the function ϕ(x, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx1 − βx2 = 0. . . . . . . . 252

10.1 The compact convex set H and its boundary ∂H. . . . . . . . . . . . . . . . . . . . . . . . 256
10.2 The figures of the sets Ui , Wi and Vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.3 The mapping T : I 2 → H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.4 The mapping T : A → D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
10.5 The mapping T : A◦ → D0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.6 The mapping T : S → Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

vii

, List of Figures viii

10.7 The open sets Q0.1 , Q0.2 and Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
10.8 The mapping T : I 3 → Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
10.9 The mapping τ1 : Q2 → I 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.10The mapping τ2 : Q2 → I 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.11The mapping τ2 : Q2 → I 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.12The mapping Φ : D → R2 \ {0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.13The spherical coordinates for the point Σ(u, v). . . . . . . . . . . . . . . . . . . . . . . . . 300
10.14The rectangles D and E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.15An example of the 2-surface S and its boundary ∂S. . . . . . . . . . . . . . . . . . . . . . 304
10.16The unit disk U as the projection of the unit ball V . . . . . . . . . . . . . . . . . . . . . . 325
10.17The open cells U and V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
10.18The parameter domain D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
10.19The figure of the Möbius band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.20The “geometric” boundary of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

11.1 The open square Rδ ((p, q)) and the neighborhood N√2δ ((p, q)). . . . . . . . . . . . . . . . 350

B.1 The plane angle θ measured in radians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
B.2 The solid angle Ω measured in steradians. . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
B.3 A section of the cone with apex angle 2θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
$10.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
COURSEHERO2

Get to know the seller

Seller avatar
COURSEHERO2 Maastricht University
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
4 year
Number of followers
2
Documents
82
Last sold
11 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions