100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

samenvatting fysica miv wiskunde: 2e orde differentiaal

Rating
-
Sold
-
Pages
2
Uploaded on
09-02-2022
Written in
2020/2021

Samenvatting van de powerpoints van dit hoofdstuk voor het vak fysica miv wiskunde

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 9, 2022
Number of pages
2
Written in
2020/2021
Type
Summary

Subjects

Content preview

Fysica miv wiskunde: wiskunde – 2E ORDE DIFFERENTIAALVERGELIJKINGEN

2
d y dy
Algemene vorm: a +b + cy=f ( x)
dx 2
dx
vb: y’’+2y’ – y = x2

homogeen: gelijk aan 0 inhomogeen: niet gelijk aan nul, maar aan een functie

homogene, 2e orde, lineaire DV
y = e λx invullen in DV  (a λ 2 + b λ + c)e λx = 0
aan homogene functie voldaan als a λ 2 + b λ + c = 0 => karakteristieke vergelijking
oplossingen worden bepaald door discriminant

discriminant > 0
integraal wordt dan: y(x) = Ae λ x + Be λ x
1 2




discriminant = 0
integraal wordt dan: y(x) = (A+Bx)e λx

discriminant < 0
integraal wordt dan: y(x) = epx(C1cosqx + C2sinqx)
λ = p+qi en p-qi i2 = -1 p = -b/2a q = √−D/2a

Particuliere integraal : integraal die voldoet aan bestaansvoorwaarden (BVW)

Inhomogene 2e orde DV
d2 y dy
Algemene vorm: a 2
+b + cy=f ( x)
dx dx

Algemene integraal: y(x) = y0(x) + y*(x)
- y0(x) = algemen integraal van overeenkomstige homogene DV ay’’+by’+cy = 0
- y*(x) = willekeurige particuliere integraal van inhomogene DV

α is geen wortel van karakteristieke vergelijking: y*(x) = Qn(x)e αx
α is enkelvoudige wortel van karakteristieke vergelijking: y*(x) = xQn(x)e αx
α is dubbele wortel van karakteristieke vergelijking: y*(x) = x2Qn(x)e αx

Particuliere oplossing als f(x) = Qn(x)e αx

Vb: y’’ + 4y’ + 3y = x  Q(x) = x en α = 0
Karakteristieke vergelijking: λ 2 + 4 λ + 3 = 0 waaruit λ = -1 en λ = -3
-x -3x
Algemene integraal: y0(x) = Ae + Be
Particuliere integraal: y*(x) = A0 + A1x (gelijk aan graad Q(x))
Invullen in vergelijking opgave: 0 + 4A1 + 3(A0 + A1x) = x

4A1 + 3A0 = 0 A0 = -4/9 y*(x) = -4/9 + x/3
3A1 = 1 A1 = 1/3


2e orde differentiaalvergelijkingen - 1

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
JAAAANA Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
14
Member since
3 year
Number of followers
1
Documents
0
Last sold
11 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions