100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Inferencia Estadística Ejercicios Resueltos 4

Rating
-
Sold
-
Pages
1
Uploaded on
26-01-2022
Written in
2021/2022

Inferencia Estadística Ejercicios Resueltos 4

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
January 26, 2022
Number of pages
1
Written in
2021/2022
Type
Exam (elaborations)
Contains
Unknown

Subjects

Content preview

Universidad de Santiago de Chile
Facultad de Ciencia
Departamento de Matemática y Ciencia de la Computación


Control N◦ 2 de Inferencia Estadı́stica
Profesor(a): Vı́ctor H. Salinas, Estefanı́a P. Cerda
Ayudante: Sebastián Rı́os

ˆ El tiempo de falla X de un sistema de aire acondicionado sigue una distribución expo-
nencial con densidad dada por
1 1
f (x|θ) = exp{− (x − θ)}, x ≥ θ,
2 2
donde θ > 0.
(a) (25 puntos) Determine una estadı́stica suficiente para θ y su función de densidad
de probabilidad.
f (X|θ) = ( 12 )n exp{− 12 (Xi − θ)}, 0 < θ ≤ Xi ∀i = 1, ..., n.
P


Ahora, 0 < θ ≤ Xi , ∀i = 1, ..., n ⇔ 0 < θ ≤ min(Xi )

Luego, f (X|θ) = ( 21 )n exp{− 12 Xi } × exp{ n2 θ}I(0,min(Xi )] (θ).
P


Considerando g(min(Xi ); θ) = exp{ n2 θ}I(0,min(Xi )] (θ) y h(X) = ( 12 )n exp{− 12 Xi },
P

se obtiene que T = min(Xi ) es una estadı́stica suficiente para θ.
P (T > t) = (P (X > t)n = exp{− n2 (t − θ)} ⇒ fT (t) = − dP (T dt
>t)
, t ≥ θ.
Luego, fT (t) = n2 exp{− n2 (t − θ)}, t ≥ θ.

(b) (10 puntos) A partir de la estadı́stica suficiente para θ, determine una función
pivote para θ.
Sea Y = T − θ, dy = dt, por lo tanto, fY (y) = n2 exp{− n2 t}, t ≥ 0.
Ası́ Y = T − θ es una función pivote para θ.

(c) (25 puntos) Suponga que se observó el vector x = (8, 7, 10, 6, 9), cuyas compo-
nentes están en miles de horas. Determine un intervalo de 95% de confianza para
θ.
Se calculan a y b de manera que Pr{a < Y = T − θ < b} = 1 − α
⇒ Pr{T − b < θ < T − a} = 1 − α. Luego IC(θ; 1 − α) = (T − b, T − a).
Los valores de a y b se obtienen usando la función de densidad de la función pivote
Y , i.e.,
−n n
= α2 , b∞ fY (y)dy = e− 2 b = α2 .
Ra a
0 fY (y)dy = 1 − e
R
2

Usando los datos n = 5, t = min(xi ) = 6, α = 0.05,
a = − n2 log(1 − α2 ) = 0.010, b = − n2 log( α2 ) = 1.476.

Finalmente, IC(θ; 95%) : (6 − 1.476; 6 − 0.010) = (4.524; 5.990).
$7.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
juanitomakambe

Get to know the seller

Seller avatar
juanitomakambe Universidad de Santiago de Chile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
23
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions