100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting kans c

Rating
-
Sold
-
Pages
19
Uploaded on
23-01-2022
Written in
2021/2022

Samenvatting kans c leerjaar 2 periode 2

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 23, 2022
Number of pages
19
Written in
2021/2022
Type
Summary

Subjects

Content preview

Samenvatting kans periode 2
Wortel n-wet
Bij de wortel n-wet horen twee stellingen.

Stelling nummer 1:
Gegeven zijn onderling onafhankelijk identiek verdeelde stochasten X 1, X2, … , Xn
met E(Xi) = μ en σ(Xi) = σ voor alle i.
We bekijken de stochast: T = X1 + X2 + … + Xn.
Dan geldt:
E(T) = n ⋅ μ
σ(T) = √(n) ⋅ σ

Stelling nummer 2:
Gegeven zijn onderling onafhankelijk identiek verdeelde stochasten X 1, X2, … , Xn
met E(Xi) = μ en σ(Xi) = σ voor alle i.
X1 + X2 + … + X n
We bekijken de stochast: G= .
n
Dan:
E(G) = μ
σ
σ(G) = .
√n
Normaal verdeelde stochasten:
Gegeven zijn onderling afhankelijke normaal verdeelde stochasten X1, X2, … , Xn met
E(Xi) = μ en σ(Xi) = σ voor alle i.
X1 + X 2 + … + X n
We bekijken de stochasten T = X1 + X2 + … + Xn en G= .
n
Dan geldt voor alle n:
T ~ Norm(n ∙ μ , √(n) ∙ σ )
σ
G ~ Norm( μ , )
√n
De stochast T =aX 1 +bX 2 is dan ook normaal verdeeld (geldt voor ieder lineaire
combinatie van stochasten).

Als bij niet-normaal verdeelde stochasten de n ≥ 30, kunnen wij deze normaal
benaderen.

,Standaardiseren van een stochast
Gegeven is een stochast X die normaal is verdeeld met Norm(μ, σ). Wij gaan nu de




X−μ
stochast Z bekijken: Z = . Dan is Z normaal verdeeld met Norm(0, 1).
σ

Populatie versus steekproef
Populatieparamaters:
- Fractie p
- Gemiddulde μ
- Variantie σ2
- Standaardeviatie σ
Steekproefparameters:
- Fractie ^p
- Gemiddelde x
- Variantie s2
- Standaardeviatie s

, Puntschatters
Met behulp van een puntschatter kunnen wij een onbekende populatieparameter θ.
Dit doen wij door één enkele waarde te schatten. Deze schatter noemen wij θ^ . Deze
schatter berekenen wij vanuit de steekproef. Hiervoor willen wij een ‘goede’ schatter,
want als die er teveel naast zit hebben we er niks aan. Wij verwachten dus dat de θ^
gelijk is aan θ, ofwel E(θ^ ) = θ. Een goede schatter noemen wij ook wel zuiver. Hoe
laten wij nou zien of een schatter zuiver is? Hiervoor heb ik een voorbeeld:
Toon aan dat θ= ^ 5 X +Y + 6 Z een zuivere schatter is voor μ.
12

(
E ( θ^ ) =E )
5 X +Y +6 Z
12
1 1 1 1
= E ( 5 X +Y +6 Z )= E ( 5 X ) + E ( Y )+ E ( 6 Z )=¿.
12 12 12 12
5 1 6 5 1 6
E ( X ) + E ( Y )+ E ( Z )= μ+ μ + μ=μ. Dus de schatter is zuiver.
12 12 12 12 12 12

Hoe groter de steekproef wordt, hoe meer de schatter lijkt op het echte gemiddelde.
Als wij namelijk een schatter hebben, is er altijd een variantie en standaardafwijking
die erbij hoort. Die standaardafwijking noemen wij ook wel de standaardfout. Als wij
de gehele populatie pakken, is die standaardfout altijd 0, want dat is gewoon het
gemiddelde dat klopt en je kan geen andere gegevens pakken. Wij willen deze
standaardfout dus zo klein mogelijk hebben. De standaardfout berekenen wij door
σ (θ) te berekenen van puntschatter θ^ . Dit doen wij op dezelfde manier als we in de
vorige hoofdstukken de standaardafwijking berekenen (zie tabel hierboven of wortel
n wet).

Gegeven is een binomiaal experiment van lengte n met (onbekende) succeskans p.
Laat X het aantal successen van de n keer. Dan:
De fractie successen
X
n
is zuivere schatter voor p, want: E ( )
X
n
= p.
$4.17
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
BartHoeks

Get to know the seller

Seller avatar
BartHoeks Hogeschool Arnhem en Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
3
Member since
3 year
Number of followers
1
Documents
8
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions