100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Business Research Methods Summary All theory (MBA - 2022)

Rating
-
Sold
7
Pages
52
Uploaded on
14-01-2022
Written in
2021/2022

A complete summary of all the theory for BRM based on the slides by Profs. De Ridder and Berlinschi. (Including SPSS steps and examples.)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 14, 2022
Number of pages
52
Written in
2021/2022
Type
Summary

Subjects

Content preview

1

,Business research methods
Table of contents
Chapter one: logistic regression ..................................................................................................................................... 4
1.1 introduction .................................................................................................................................................... 4
1.1.1 Logistic regression.......................................................................................................................................... 4
1.1.2 LR example (data credit) ................................................................................................................................ 4
1.1.3 LR example (prcancer) ................................................................................................................................... 5
1.2 The logistic regression model ............................................................................................................................... 5
1.2.1 General logistic regression model .................................................................................................................. 7
1.2.2. Explanatory variables .................................................................................................................................... 7
1.3 Regression coefficients ......................................................................................................................................... 8
1.3.1 Estimation method ........................................................................................................................................ 8
1.3.2 Interpretation: in terms of probabilities ........................................................................................................ 9
1.3.3 Odds ............................................................................................................................................................... 9
1.3.4 odds interpretation ...................................................................................................................................... 11
1.4 hypothesis testing ............................................................................................................................................... 12
1.4.1 Hypothesis test: likelihood ratio test ........................................................................................................... 12
1.4.2 Significant variable ? H0: βi=0 versus H1: βi≠0 .............................................................................................. 13
1.5 quality ................................................................................................................................................................. 15
1.5.1 Classifications............................................................................................................................................... 15
1.5.2 Hosmer and Lemeshow test ........................................................................................................................ 16
1.6 assumptions ........................................................................................................................................................ 17
1.6.1 linearity ........................................................................................................................................................ 17
1.6.2 outliers ......................................................................................................................................................... 17
1.6.3 QMC ............................................................................................................................................................. 18
1.6.4 Quasi-complete separation (QCS) ................................................................................................................ 18
chapter two: factor analysis ......................................................................................................................................... 20
2.1 Correlation and factors ................................................................................................................................. 20
Overview of factor analysis ................................................................................................................................... 21
2.1.1 Correlation matrix ........................................................................................................................................ 21
2.2 factors ................................................................................................................................................................. 24
2.2.1 Constructing factors (factor model: x=af + u) .............................................................................................. 24
2.2.2 How many factors do we need?................................................................................................................... 27
2.2.3 How good is the factor model? .................................................................................................................... 31
2.3 interpretation ..................................................................................................................................................... 33

2

, 2.4 Factor scores ....................................................................................................................................................... 36
2.4.1 How can we determine factor scores? ......................................................................................................... 37
2.4.2 Examples ...................................................................................................................................................... 37
2.5 Summary of factor analysis: what to mention .................................................................................................... 39
2.6 Types of factor analysis ....................................................................................................................................... 39
2.6.1 Exploratory factor analysis ........................................................................................................................... 39
2.6.2 Confirmatory factor analysis ........................................................................................................................ 39
chapter three: reliability analysis.................................................................................................................................. 39
3.1 Use of reliability analysis..................................................................................................................................... 39
3.2 Scale .................................................................................................................................................................... 40
3.2.1 Coding of the items ...................................................................................................................................... 40
3.2.2 Number of items .......................................................................................................................................... 40
3.2.3 Reliability of a scale ...................................................................................................................................... 41
3.3 Example .............................................................................................................................................................. 43
chapter four: cluster analysis ........................................................................................................................................ 44
4.1 Cluster analysis methods .................................................................................................................................... 44
4.1.1 Hierarchical clustering ................................................................................................................................. 44
4.1.2 K-means clustering ....................................................................................................................................... 50
4.2 Clustering summary ............................................................................................................................................ 52




3

, Chapter one: logistic regression
1.1 introduction
Y = 0 + 1 X1 +  2 X 2 + ... +  p X p + 
Linear model:

E.g. education/ income

1.1.1 Logistic regression
Many empirical problems however imply a dummy variable as the dependent variable

Examples:

• Company is profitable (1) or unprofitable (0)
• Customers of a bank are solvent (1) or not (0)
• Company is into corporate social responsibility (1) or not (0)
• Customer responds to promotion (1) or not (0)
• Someone develops a heart disease (1) or not (0)
• You win the elections (1) or not (0)

We cannot apply linear regression analysis

1.1.2 LR example (data credit)
Solvency of a customer (data_credit.sav)

Research question: which charateristics determine whether someone is a good or bad payer?

Population: customers of a leasing company

Sample: 1000 customers

Dependent variable Y: good = 1 good payer, solvent // 0 bad payer, not solvent

Explanatory variables:

• Age: age in years
• Estate: owner of estate (1=yes; 0=no)
• Marital status: married, living together, single
• → dummies
o m1:1 when married, 0 otherwise
o m2: 1 when living together, 0 otherwise
o reference: single

Does the age of the respondent have an impact on the solvency? → no clear impact but linear regression?




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
MBASurvivor Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
14
Member since
3 year
Number of followers
11
Documents
8
Last sold
6 months ago

3.5

2 reviews

5
0
4
1
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions