100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

MAT1511 EXAM PACK 2022

Rating
-
Sold
4
Pages
206
Grade
A+
Uploaded on
11-01-2022
Written in
2022/2023

Latest exam pack questions and answers and summarized notes for exam preparation. for assistance. All the best on your exams!!

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Uploaded on
January 11, 2022
File latest updated on
December 8, 2022
Number of pages
206
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

MAT1511
EXAM PACK




FOR ASSISTANCE WITH THIS MODULE +27 67 171 1739

, ONLY FOR SEMESTER 1 STUDENTS
ASSIGNMENT 01
Submission date: 1 March 2019


Note: All references are for the 6th edition of Steward, Redlin and Waston.


Question 1
Let P (x) = x6 − 2x5 − x4 + x3 + 2x2 + x − 2

1

1(a) Determine whether x + 2
is a factor of P (x) , use Factor Theorem.
Solution:
Concept Explained:

See Factor Theorem on page 249.
Let P (x) = (x − c) . Q (x) + r
where Q (x) is the quotient and r is the remainder when P (x) is divided by (x − c) .
Set x − c = 0, we have x = c. Thus the Factor Theorem implies that if P (c) = 0,
then x − c is a factor of P (x) .



   
1 1
In this question, x+ represents (x − c) . Hence we need to test if P − = 0.
2 2
   6  5  5  4  3  2  
1 1 1 1 1 1 1 1
P − = − −2 − − − − − + − +2 − + − −2
2 2 2 2 2 2 2 2

159
=− 6= 0
64

1
Hence, x + is not a factor of P (x) .
2

1(b) Find all the possible rational zeros of P (x) by using the Rational Zeros Theorem


Concept Explained: (page 253)

The Rational Zeros Theorem states that all the possible rational zeros of a P (x) is
p
given by , where p is the factor of the constant coefficient and q is the factor of the
q
leading coefficient



2

, Solution:

Since P (x) = x6 − 2x5 − x4 + x3 + 2x2 + x − 2
p is ± 1 or ± 2
p
Therefore, the possible values of are:
q
±1 ±2
and
±1 ±1

These give ±1 and ±2. That is
−1, −2 + 1, and + 2



1(c) P (x) = x6 − 2x5 − x4 + x3 + 2x2 + x − 2
Solve P (x) = 0

Concept Explained:

To solve P (x) = 0, first Rational Zero Theorem 1(b) may be used to find all possible
roots/zeros of P (x) , secondly use Factor Theorem (1a) to determine the actual roots/zeros
of P (x) . After complete factorisation, P (x) = 0 becomes A · B · C · D... = 0 where each
A, B, C, D represents factor of P (x) . Lastly set each of these to zero as follows
A = 0 or B = 0 or C = 0, or D = 0 ...
Then each of these give respective values of x.



Solution:

From the Rational Zero Theorem in 1(b), the possible roots/zeros of P (x) are −1, −2, +1 and
+2. Factor Theorem is applied to determine the actual roots as follows:
P (−1) = (−1)6 − 2 (−1)5 − (−1)4 + (−1)3 + 2 (−1)2 + (−1) − 2
1+2−1−1+2−1−2=0
P (−2) = (−2)6 − 2 (−2)5 − (−2)4 + (−2)3 + 2 (−2)2 + (−2) − 2
= 26 + 2 (25 ) − (24 ) − (23 ) + 2 (22 ) − 2 − 2
= 108 6= 0
P (1) = (1)6 − 2 (1)5 − (1)4 + (1)3 + +2 (1)2 + (1) − 2
=1−2−1+1+2+1−2=0
and
P (2) = 26 − 2 (25 ) − 24 + 23 + 2 (22 + 2 − 2)
= 64 − 64 − 16 + 8 + 8 + 2 − 2
=0



3

, Therefore (x + 1) , (x − 2) and (x − 1) are the roots of P (x) . But the highest power of P (x)
is 6, hence the roots are expected to be 6. Multiply the factors (x + 1) (x − 2) (x − 1) to have
x3 − 2x2 − x + 2. Use long division to divide P (x) by x3 − 2x2 − x + 2 to have x3 − 1. Thus

P (x) = x3 − 2x2 − x + 2 x3 − 1
 


Use Rational Zero Theorems to simplify x3 − 1 to have (x − 1) (x2 + x + 1) .
Therefore
P (x) = x3 − 2x2 − x + 2 (x − 1) x2 + x + 1
 

remember that x3 − 2x2 − x + 2 = (x + 1) (x − 2) (x − 1)
Hence
P (x) = (x + 1) (x − 2) (x − 1) (x − 1) (x2 + x + 1)
= (x − 1)2 (x + 1) (x − 2) (x2 + x + 1)

∴ P (x) = 0 implies
(x − 1)2 (x + 1) (x − 2) (x2 + x + 1) = 0.
⇒ x = −1, 1(twice), 2, and for x2 + x + 1 = 0
Use quadrafic formula √
−b ± b2 − 4ac
x= to get
2a
√ √
1 − 3 1 − 3
x= + i or + i
2 2 2 2

Sythetic division may also be used to determine the actual factors of P (x)


√ √
1 3 1 3
Therefore, the values of x for which P (x) = 0 are: −1, 1(twice), 2, − + i and − − i.
2 2 2 2


Question 2


Use Descartes’ Rule of Signs to determine the possible number of positive, negative and imaginary
zeros of
P (x) = 2x6 − 3x5 − 9x4 + 15x3 + 3x2 − 12x + 4.



Summarize your answer in the form of a table, see page 13 of the Study Guide.




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
EduPal University of South Africa (Unisa)
Follow You need to be logged in order to follow users or courses
Sold
149173
Member since
7 year
Number of followers
35995
Documents
4334
Last sold
10 hours ago

4.2

13559 reviews

5
7806
4
2688
3
1791
2
455
1
819

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions