100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Introduction to Probability and Statistics

Rating
-
Sold
-
Pages
4
Uploaded on
03-01-2022
Written in
2021/2022

I have summarized some of the corresponding books along with my interpretation of the lecture notes from the course. This is suitable for anyone who is new to the idea of probability and statistics. It assumed knowledge of derivatives and integrals.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
1-9
Uploaded on
January 3, 2022
Number of pages
4
Written in
2021/2022
Type
Summary

Subjects

Content preview

1 Introduction
Population - The de
ned set of object we desire information from. We can have a population mean µ, median µ̃,
variance σ2 , and standard deviation σ.
Sample - The subset of the population we analyze. We can have a sample
n
mean (arithmetic average of
P
x i
x̄ = n
i=1

n 2
data), median x̃ (the middle value of an ordered data set), variance s2 = with standard deviation s. The
P
i=1 (xi −x̄)
√ n−1
standard error of the mean is s/ n.
Variables are either quantitative, continuous or discrete, or qualitative, categorical (ordinal or nominal) or unstruc-
tured.
A multimodal histogram has multiple peaks. A dichotomous population consists of only two categories; the
sample proportion in category one is x/n, and 1 − x/n in category two.
Counting
Order with replacement: nk . Order without replacement: (n−k)!
n!
. Order with non-distinct objects of K sets: n!
n1 !...nK ! .
No order with replacement: n+k−1
. No order without replacement: nk .
 
k



2 Probability
An event is a subset of outcomes contained in the sample space which is the set of all possible outcomes.
Union A ∪ B
Intersection A ∩ B
Disjoint Events - when A ∩ B = ∅
Probability of A from the sample: P (A) = cardinality
cardinality S .
A

DeMorgan's Laws (A ∪ B)′ = A′ ∩ B ′ and (A ∩ B)′ P = A′ ∪ B ′ .
Axioms P (A) ≥ 0, P (S) = 1, and P (A1 ∪ A2 ∪ ...) = ∞ i=1 P (Ai ) for a collection of disjoint events.
For any event A, P (A) + P (A′ ) = 1 and P (A) ≤ 1.
Union of Three Events - P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A, B) + P (A, C) + P (B, C) + P (A, B, C).
Conditional Probability - P (A|B) = (A,B)P (B)
Independence - A and B are independent events if: P (A, B) = P (A)P (B), P (A|B) = P (A), or P (B|A) = P (B),
mutual independence extends for k events..
Intersection via Conditioning (Multiplication Rule) - P (A, B) = P (B|A)P (A)
Pk
LoTP - For any set of disjoint and exhaustive events A1 , ..., Ak , P (B) = P (B|A1 )P (A1 ) + · · · + P (B|Ak )P (Ak ) =
i=1 P (B|Ai )P (Ai )
Bayes' Theorem - Let A1 , ..., Ak be any set of disjoint and exhaustive events with prior probabilities P (Ai ). The
posterior probability of Aj given B is P (Aj |B) = P (Aj ,B)
P (B) = Pk
P (B|Aj )P (Aj )
i=1 P (B|Ai )P (Ai )
Random Variables (RV's) and Distributions
RV - A function whose domain is S and whose range is R.
Realization - For some outcome ω and rv X , X(ω) = x is the realization.
PMF - Gives theP probability that a discrete rv takes on x, de
ned as P (X = x) = fX (x). A PMF satis
es
fX (x) ≥ 0 ∀ x and fX (x) = 1.
x
PDF - A function f( x) for a continuous rv such that P (a ≤ X ≤ b) = a f (x)dx. A PDF satis
es f (x) ≥ 0 ∀ x and
Rb

f (x)dx = 1. If the CDF is dierentiable, then the PDF is the derivative of the CDF.
R∞
−∞
Expected Values (of a function of a rv) - (X = x) for discrete X and E[g(X)] =
P
E[g(X)] = x g(x)P
g(x)f (x)dx for continuous X .
R∞
−∞
Linearity of EV's - E[aX + bY + c] = aE[X] + bE[Y ] + c
Variance - V ar[X] = E[X − E[X]]p2 = E[X 2 ] − (E[X])2
Standard Deviation - SD[X] = V ar[X] P
Discrete CDF - FX (x) = P (X ≤ x) = y:y≤x fX (y), the observed value of X will be at most x. Note that
P (a ≤ X ≤ b) = F (b) − F (a−), where F (a−) includes P (X = a) for discrete X .
Continuous CDF - F (x) = P (X ≤ x) = −∞ f (y)dy (integrate the PDF). Note that P (X > a) = 1 − F (a) and
Rx

P (a ≤ X ≤ b) = F (b) − F (a).
Properties of CDFs - limx→−∞ P (X ≤ x) = 0, limx→∞ P (X ≤ x) = 1, P (X ≤ x) is non-decreasing, and P (X ≤ x)
is right continuous.




1
Free
Get access to the full document:
Download

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
TheQuantitativeNoteMan

Get to know the seller

Seller avatar
TheQuantitativeNoteMan Simon Fraser University
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
8
Last sold
3 year ago
Comprehensive Note Corner

I sell comprehensive and approachable study notes for quantitative subjects to students looking for a deep understanding and appreciation for the subject at hand. I believe that solving many, many problems is the number one method to mastering a subject. This can be achieved by having an accurate, concise, and organized set of notes to refer to. My notes provide a great alternative to flipping through a textbook while trying to work practice problems. That being said, none of my notes contain examples as those should be done by the student. My notes are great to review at least once a day. Note: My Chemistry notes, Pre-calculus notes, and calculus 1 notes are done in Microsoft Word, with the rest done in LaTeX (As of January 2nd 2022). Any further documents posted in 2022 or later years will be done strictly in LaTeX or pen and pencil. Thank you!

Read more Read less
0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions