100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Calculus 2 Notes (Integral Calculus)

Rating
-
Sold
-
Pages
29
Uploaded on
02-01-2022
Written in
2020/2021

I have summarized Chapters 5, 6, 7, 8, and 9, along with differential equation notes (labeled chapter 10 in my notes) spread out across the book. This is more rigorous than a standard course in integral calculus. I wasn't a fan of the calculus 2 offered at my school, so I followed the textbook of UBC's MATH 121 Honours Integral Calculus.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
5-9
Uploaded on
January 2, 2022
Number of pages
29
Written in
2020/2021
Type
Summary

Subjects

Content preview

5 Integration
5.1 Sums and Sigma Notation
De
nition 1 Sigma Notation
If m and n are integers with m ≤ n, and if f is a function de
ned at the integers m, m + 1, m +
2, ..., n, the symbol ni=m f (i) represents the sum of the values of f at those integers:
P

n
X
f (i) = f (m) + f (m + 1) + f (m + 2) + · · · + f (n).
i=m

The explicit sum appearing pn the right side of the equation is the expansion of the sum
represented in sigma notation on the left side.
Note i is the index of summation, use i = j + m for all i. The index of summation is a
dummy variable. The limits of summation: m is the lower limit, and n is the upper limit.
Theorem 5.1 Summation Formulas (Closed Form)
n
X
1 = 1 + 1 + 1 + · · · + 1 = n, (n terms)
i=1
n
X n(n + 1)
i = 1 + 2 + 3 + ··· + n =
i=1
2
n
X n(n + 1)(2n + 1)
i2 = 12 + 22 + 32 + · · · + n2 =
i=1
6
n
X rn − 1
ri−1 = 1 + r + r2 + r3 + · · · + rn−1 =
i=1
r−1

A sum of the form ni=m (f (i + 1) − f (i)) telescopes out to the closed form f (n + 1) − f (m)
P
because all but the
rst and last terms cancel out, this is called a telescoping sum.

5.2 Areas as Limits of Sums
The Basic Area Problem
Divide [a, b] into n subintervals:
a = x0 < x1 < x2 < · · · < xn = b.

Denote by ∆xi the length of the ith subinterval [xi−1 , xi ]:
∆xi = xi − xi−1 , (i = 1, 2, 3, ..., n).

Then build a rectangle with width ∆xi and height f (xi ). The sum of these areas is given by:
n
X
Sn = f (x1 )∆x1 + f (x2 )∆x2 + f (x3 )∆x3 + · · · + f (xn )∆xn = f (xi )∆xi .
i=1


1

, Thus, Area of R = limn→∞ Sn , where max ∆xi → 0.

For equal subinterval lengths,
b−a i
∆xi = ∆x = , xi = a + i∆x = a + (b − a).
n n

5.3 The De
nite Integral
Let P be a
nite set of point arranged in order from a to b on the real line, thus
P = {x0 , x1 , x2 , ..., xn },

is called a partition of [a, b].
n depends on the partition, so n = n(P ), with length ∆xi , (f or 1 ≤ i ≤ n), where the greatest
of these numbers is the norm of P , denoted:
kP k = max ∆xi .

De
nition 2 Upper and Lower Riemann Sums
The lower Riemann sum, L(f, P ), and the upper Riemann sum, U (f, P ), for the function
f and the partition P are de
ned by:
n
X
L(f, P ) = f (l1 )∆x1 + · · · + f (ln )∆xn = f (li )∆xi ,
i=1

n
X
U (f, P ) = f (u1 )∆x1 + · · · + f (un )∆xn = f (ui )∆xi .
i=1

De
nition 3 The De
nite Integral
Suppose there is exactly one number I such that for every partition P of [a, b] we have
L(f, P ) ≤ I ≤ U (f, P ).

Then we say that the function f is integrable on [a, b], and we call I the de
nite integral
of f on [a, b]. The de
nite integral is denoted by the symbol
Z b
I= f (x)dx.
a

The dummy variable of the de
nite integral is x.
For all partitions P of [a, b], we have
Z b
L(f, P ) ≤ f (x)dx ≤ U (f, P )
a

Given a partition P having kP k = max ∆xi , chose a point ci (called a tag ) in each subinterval
and let c = (c1 , c2 , ..., cn ) denote the set of these tags. The sum
n
X
R(f, P, c) = f (ci )∆xi = f (c1 )∆x1 + · · · + f (cn )∆xn
i=1


2

, is called the Riemann sum of f on [a, b] corresponding to partition P and tags c.
The limit of a Riemann sum is the de
nite integral, that is
Z b
lim R(f, P, c) = f (x)dx
n(P )→∞, kP k→0 a

Theorem 5.2 If f is continuous on [a, b], then f is integrable on [a, b].
It is su
cient that, for any given , we should be able to
nd a partition P of [a, b] for which
U (f, P ) − L(f, P ) < , this restricts there to be only one I .

5.4 Properties of the De
nite Integral
If a > b, we have ∆xi < 0 for each i, so the integral will be negative for positive functions f and
vise versa.
Theorem 5.3 Properties of the De
nite Integral
Let f and g be integrable on an interval containing the points a, b, and c. Then
(a) An integral over an interval of zero length is zero.
Z a
f (x)dx = 0.
a

(b) Reversing the limits of integration changes the sign of the integral.
Z a Z b
f (x)dx = − f (x)dx.
b a

(c) An integral depends linearly on the integrand. If A and B are constants, then
Z b Z b Z b
(Af (x) + Bg(x))dx = A f (x)dx + B g(x)dx.
a a a

(d) An integral depends additively on the interval of integration.
Z b Z c Z c
f (x)dx + f (x)dx = f (x)dx.
a b a

(e) If a ≤ b and f (x) ≤ g(x) for a ≤ x ≤ b, then
Z b Z b
f (x)dx ≤ g(x)dx.
a a

(f) The triangle inequality for sums extends to de
nite integrals. If a ≤ b, then
Z b Z b
f (x)dx ≤ |f (x)|dx.
a a

(g) The integral of an odd function over an interval symmetric about zero is zero. If f is an
odd function, then Z a
f (x)dx = 0.
−a


3
$12.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
TheQuantitativeNoteMan

Get to know the seller

Seller avatar
TheQuantitativeNoteMan Simon Fraser University
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
8
Last sold
3 year ago
Comprehensive Note Corner

I sell comprehensive and approachable study notes for quantitative subjects to students looking for a deep understanding and appreciation for the subject at hand. I believe that solving many, many problems is the number one method to mastering a subject. This can be achieved by having an accurate, concise, and organized set of notes to refer to. My notes provide a great alternative to flipping through a textbook while trying to work practice problems. That being said, none of my notes contain examples as those should be done by the student. My notes are great to review at least once a day. Note: My Chemistry notes, Pre-calculus notes, and calculus 1 notes are done in Microsoft Word, with the rest done in LaTeX (As of January 2nd 2022). Any further documents posted in 2022 or later years will be done strictly in LaTeX or pen and pencil. Thank you!

Read more Read less
0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions