100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Advanced Statistics (MAT20306)

Rating
-
Sold
1
Pages
5
Uploaded on
15-12-2021
Written in
2021/2022

In deze documenten worden lectures 1 tot en met les 11 van Advanced statistics samengevat. Deze lectures zijn gegeven in de eerste periode van schooljaar 2021/2022. Lecture 6 en 7 zijn samengevoegd tot één document omdat de stof naadloos op elkaar aansluit.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 15, 2021
Number of pages
5
Written in
2021/2022
Type
Summary

Subjects

Content preview

Lecture 11 – Analysis of covariance



Interest in treatment effects (voorbeeld 1)
quantitative factor = covariance
ANCOVA:
-het gebruiken van extra informatie van een quantitative variabele x
(getallen), dat niet gebruikt wordt in het design.
- We voegen β1x toe aan het ANOVA model om te corrigeren voor verschillen
tussen x
model: yij = β0 + τ1 + β1xij + εij met εij ~ N(0, σ) independent, met τref = 0 (zelf
kiezen welke)
- Assumptions:
 linear relationship between response y en covariate x
 slope (β1) is the same for all treatments
 testen door een full vs reduced model F test
 covariate x does not depend on the treatments

β0 = mean yield voor τref = C at x = 0
β0 + τ2 = mean yield for F at x = 0
β0 + τ3 = mean yield for S at x = 0




Adjusted treatment means
y i, adj = y i - ^β 1( x i. - x ..) = ^β 0 + τ^ i + ^β 1 x .. voor elke i = 1,…, t

y 1, adj - y 2, adj = y 1 - y 2 - ^β 1( x 1. - x 2) = τ^ 1 - τ^ 2


F-test for treatment effects
H0 = geen treatment effects τi = 0
Full model vs reduced model
Full model:
- Intercept β0
- Treatment effects τi
- Coefficient β1 van x (3 lijnen -> zie voorbeeld)
Reduced model:
- Intercept β0
- Coefficient β1 van x (1 lijn)



Interest in x-effect(s) (voorbeeld 2)
- Linear model met quantitative en qualitative explanatory variables
 interest in the relationship between variable y (response) and x
(explanatory of regressor)
 x is nu ook van belang, niet alleen meer om de precisie te verhogen
Assume:
- relatie tussen y en covariabele x is linear

, Lecture 11 – Analysis of covariance


- slopes van covariabele mogen verschillen tussen treatments
 interaction term tussen treatment en covariate

Parallel-lines model
model: yij = β0 + τ1 + β1xij + εij
Voordrug A: μy = β0 + β1x
- Intercept = β0
- Slope = β1
Voordrug B: μy = β0 + τ2 + β1x
- Intercept = β0 + τ2 -> τ2 is het verschil tussen de bovenste en onderste
lijn in de grafiek
- Slope = β1
Interaction: non parallel lines
model: yij = β0 + τ1 + β1xij + λixij + εij met τ1 = λ1 = 0, εij ~ N(0, σ) indep
Slopes/hellingen vergelijken met t-test
H0: λ2 = 0 vs Ha: λ2 ≠ 0
TS: t = ^λ 2/se( ^λ 2)
under H0 t~t(dfE)
under Ha t tends to larger of smaller values -> two tailed
uitkomst t =
p = … dus:

Slopes/hellingen vergelijken met F-test
H0: λ2 = 0 vs Ha: λ2 ≠ 0
TS: F = MSDrug*dose/MSE (zie voorbeeld)
under H0 F ~ F(df 1 = df interactie, df 2 = dfE)
Under Ha F tends to lager values (altijd)
Rechter P waarde
$6.59
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jitskevanbrink

Get to know the seller

Seller avatar
jitskevanbrink Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions