100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Introduction to Statistical Analysis

Rating
-
Sold
5
Pages
52
Uploaded on
27-11-2021
Written in
2020/2021

This is a complete summary of the course Introduction to Statistical Analysis

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
November 27, 2021
Number of pages
52
Written in
2020/2021
Type
Summary

Subjects

Content preview

Introduction to Statistical Analysis
CM1005




This summary includes:
Chapters 1, 3, 4 and 15
+ lecture notes week 1 through 7




By Esmée Lieuw On




ESMEE LIEUW ON 1

,Introduction to Statistical Analysis
Based on first edition (2012)

Chapter 1: Introduction to Statistics

Statistics: a branch of mathematics used to summarize, analyze and interpret a group of
numbers or observations
 Descriptive statistics: statistics that summarize observations
 Inferential statistics: statistics used to interpret the meaning of descriptive statistics

Descriptive Statistics

= Procedures used to summarize, organize and make sense of a set of scores/observations
referred to as data
• Typically presented graphically, in tabular form (tables) or summary (single values).
• Data: measurements/observations that are typically numeric (datum (singular) is
single measurement/observation often referred to as score or raw score.
Generally presented in summary (tables or summary statistics (ex. average))
Average = mean, middle = median, most common = mode

Inferential Statistics

= procedures used to allow researchers to infer/generalize observations made with samples
to the larger population from which they were selected
 Population: set of individuals, items or data of interest. This is the group about
which scientists will generalize.
 Population parameter: a characteristic (usually numeric) that describes a population
 Scientists rarely have access to entire population therefore not always known
population parameters → alternative: sample
 Sample: set of selected individuals, items or data taken from a population of interest
 Sample statistic: a characteristic (usually numeric) that describes a sample

Scales of Measurement

= rules for how properties of numbers can change with different uses

Order: Does the larger number indicate a greater value than a smaller number?
Differences: Does subtracting two numbers represent some meaningful value?
Ratio: Does dividing (or taking the ratio of) two numbers represent some meaningful value?

Property Nominal Ordinal Interval Ratio
Order No Yes Yes Yes
Difference No No Yes Yes
Ratio No No No Yes


ESMEE LIEUW ON 2

,Numbers on nominal scale identify something or someone; they prove no additional
information. (ex. Zip codes, credit card numbers, license plate numbers etc.)
 They are measurements where a number is assigned to represent something or
someone
 Coding: the procedure of converting a nominal value to a numeric value (ex. Seasons
of birth coded into 1,2,3,4)

Ordinal scales are measurements where values convey order or rank alone (ex. Finishing
order in competition, education level and rankings).
 Only some value greater/less than other value → differences between ranks do not
have meaning

Interval scales are measurements where the values have no true zero and the distance
between each value is equidistant (equal). (ex. Rating scales; unsatisfied-very satisfied)
 A numeric response scale used to indicate a participant’s level of agreement/opinion
with a statement
 Equidistant scales: The values whose intervals are distributed in equal units
 No true zero (ex. Temperature → it doesn’t mean there’s no temperature; arbitrary
zero point (so we could use any number to indicate none of something) (ex.
Longitude/latitude)
 True zero: values where the value 0 truly indicates nothing

Ratio scales are measurements where a set of values has a true zero and are equidistant
(ex. Length, weight, time)
 Differences are informative: the difference between 70 and 60 = the difference
between 20 and 30

Types of Data

1. Continuous/Discrete
2. Quantitative/Qualitative

Continuous/Discrete
 Continuous variable: measured along a continuum at any place beyond the decimal
point (in whole units or fractional units). (ex. Olympic sprinters are timed to the
nearest hundredths place in seconds, but if judges wanted the millionth place they
could).
 Discrete variable: measured in whole units or categories (ex. Number of siblings or
economic class; working, middle, upper class)

Quantitative/Qualitative
 Quantitative variable: varies by amount, often measured numerically and often
collected by measuring/counting. (ex. Food intake in calories or number of pieces
food consumed)



ESMEE LIEUW ON 3

,  Qualitative variable: varies by class, often represented as a label and describes
nonnumeric aspects of phenomena (ex. Socioeconomic class, depression or drug
use)

Example Continuous vs. Discrete Quantitative vs. Qualitative
Gender Discrete Qualitative
Seasons Discrete Qualitative
Duration of drug abuse (in Continuous Quantitative
years)
The size of a reward (in Continuous Quantitative
grams)

Research in Focus: Types of Data and Scales of Measurement

Qualitative variables often measured in behavioral research; focus will be on quantitative
variables because:
1) Quantitative measures are more common in behavioral research
2) Most statistical tests taught in the book are adapted for quantitative measures
3) Conclusions that we can draw from qualitative data are limited because these data
are typically on nominal scale
4) Most statistics in the book require variables to be measured on more informative
scales

SPSS in Focus: Entering and Defining Variables

• “How to use SPSS with this book” at the beginning of the book is useful to read
• Read through to know how to enter data

Chapter 3: Summarizing Data – Central Tendency

Introduction to Central Tendency

Central tendency: statistical measures for locating a single score that is most representative
or descriptive of all scores in a distribution
 Have a tendency to be at or near the center of a distribution

Population size: number of individuals that constitute an entire group/population.
Represented by capital N.

Sample size: number of individuals that constitute a subset of those selected from a larger
population. Represented by lower case n.

Measures of Central Tendency



ESMEE LIEUW ON 4
$3.68
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
esmeelieuwon Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
54
Member since
4 year
Number of followers
35
Documents
16
Last sold
9 months ago

4.7

6 reviews

5
5
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions