100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting Statistiek II (2)

Rating
-
Sold
1
Pages
17
Uploaded on
19-11-2021
Written in
2020/2021

Statistiek II aan de UA, gedoceerd door Karel Neels. Mijn resultaat: 17/20.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
November 19, 2021
Number of pages
17
Written in
2020/2021
Type
Summary

Subjects

Content preview

STATISTIEK II: MULTIVARIATE ANALYSE 2021

DEEL 1: PROBLEEMSTELLING
HOOFDSTUK 1: PROBLEEM NAAR ANALYSE
1. Notatie
 Type onderzoeksvragen: probleemkenmerk, probleemrelatie, datareductie
 Types variabelen
o Manifeste
 Continue: kwantitatieve (interval- of ratio niveau)
 Discrete: dichotoom of polytoom // nominaal of ordinaal
o Latente
 Types samenhang
o Symmetrisch= zonder causale richting aangeduid
o Lineair symmetrisch= causaal effect met constante verandering in y bij toename x
o Niet-lineair asymmetrisch= causaal effect met graduele verandering
o Interactie-effect = combinatie van variabelen zorgt voor asymmetrisch causaal effect
2. Sociaalwetenschappelijke probleemstelling en hun basisformat (SIRIS)
 Directe causaliteit
 Schijnbare causaliteit: een externe variabele (i.e. causale antecedent) zorgt in werkelijkheid
voor causaliteit
» Bivariate regressie ‘verdwijnt’ na controle (= modelspecificatie)
 Indirecte causaliteit: intermediaire variabele (tussenin) zorgt voor de causaliteit
» Bivariate regressie ‘verdwijnt’ na controle (= modelspecificatie)
 Replicatie: na controle blijft samenhang hetzelfde
 Interactieve structuur: gecombineerd effect brengt causaliteit (niet additief onderling)
 Suppressie van samenhang: aanwezig suppressor doet causaliteit verdwijnen
» Twee tegengestelde effecten onderdrukken samenhang
» Bivariate regressie ‘verdwijnt’ na controle (= modelspecificatie)

DEEL 2: BASIS STATISTIEK
HOOFDSTUK 2: METEN EN MEETNIVEAUS
1. Wat is meten? Terminologie
 Equivalentenklasse = deelverzameling uit populatie die observaties met gelijkwaardig
kenmerk groepeert
 Meetschaal = elke klasse krijgt een waarde (7 jaar, 2 meter, 16 liter, …)
 Kwalitatieve waarden of modaliteiten: namen
 Kwantitatieve waarden: cijfers (die indien nodig werkelijke hiërarchie of intrinsieke rangorde
weerspiegelen)
2. Eigenschappen van meetschalen
 Ordinaal: ordenbaarheid die hiërarchie impliceert
 Interval: meeteenheid die ‘afstand’ tussen bepaalde meetwaarden uitdrukt (// intensiteit
bestudeerd kenmerk)
 Ratio: waarde 0 impliceert afwezigheid (i.e. aanwezigheid absoluut nulpunt)
3. Meetniveaus (rangorde tussen meetschalen)
 Nominaal: categorisch of discreet, met onderling inwisselbare categorieën

,  Ordinaal: categorisch of discreet, hiërarchie tussen categorieën
 Interval: continu, met meeteenheid
 Ratio: continu, met meeteenheid en absoluut nulpunt
 Dummy-variabelen [0,1]: dichotoom categorisch MAAR meeteenheid en absoluut
nulpunt DUS ratiovariabele




HOOFDSTUK 3: FREQUENTIEVERDELINGEN & GRAFISCHE
VOORSTELLINGEN
1. Nominale variabelen
 Frequentietabel
o Absolute frequentie (Fi): aantal waarnemingen in een klasse
o Relatieve frequentie (fi): Fi gedeeld door totaal aantal waarnemingen
 Grafisch: histogram & cirkeldiagram
2. Ordinale variabelen
 Frequentietabel
o Absolute cumulatieve frequentie (Kxi): Fi klasse + Fi vorige klassen
o Relatieve cumulatieve frequentie: fi klasse + fi vorige klassen
 Grafisch: staafdiagram, histogram, cumulatieve frequentiefunctie
3. Interval- en ratiovariabelen
 Niet-in-klassen gegroepeerde gegevens
o Frequentietabel (als waargenomen waarden (k) niet te omvangrijk is)
o Grafisch: staafdiagram, frequentiepolygoon (want continu), histogram, cum. freq. functie
 Klassen gegroepeerde gegevens (= waarnemingsklassen)
o Bepaling van de klasse
» STAP 1: Variatiebreedte (V) of range = max Xi – min Xi
» STAP 2: Aantal klassen bepalen (enkel tussen 5 en 15)
» STAP 3: Klasse lengte, liefst van gelijke lengtes (V/aantal klassen)
» STAP 4: Klassemidden (xj) → bepaalt ook klassegrenzen
 Discrete variabelen: wordt vervangen door continu interval, bv. 23 wordt
[22,5;23,5]
 Continue variabelen: blijven hetzelfde
o Grafisch: frequentieveelhoek, cumulatieve freq. Diagram
HOOFDSTUK 4: UNIVARIATE STATISTISCHE PARAMETERS
1. Maatstaven voor ligging (op x-as) en centrale tendens (representatie voor ‘hele’ verdeling)
 NOM: Modus (x0) en modale klasse [midden van modale klasse is modus]
» Zeer makkelijk MAAR niet per se uniek en te geconcentreerd
 ORD: Mediaan en kwantielen (kwartielen, decielen, percentielen)
» Ongevoelig voor uitschieters, heeft voor- en nadelen
 Gemiddeldes
o INT: Rekenkundig
o RATIO (+): Meetkundig

, o RATIO: Harmonisch
2. Maatstaven voor spreiding
 Variatiebreedte (V) of range: grootste min kleinste waarneming
 Kwantielafstand: interval tussen waarden van kwantielen (bv; interkwartiel, - deciel, …)
 Momenten (m) = rekenkundig gemiddelde van ([afwijkingsscores tot een bepaald punt],
wordt specifieker met elke hogere macht)
o Gewone momenten: bepaald punt of norm, is nul
o Centraal moment van de eerste rang: bepaald punt of norm, is gemiddelde
 Gemiddelde absolute afwijking (e): in absolute cijfers dus tekens vallen weg
 Variatie (SS): som van alle kwadrateerde afwijkingsscores t.o.v. gemiddelde
[Variatiecoëfficiënt: s/rekenkundig gemiddelde]
o Variantie (s2) = SS/n [standaardafwijking (s) = wortel variantie]
o Gestandaardiseerd: z-score = [Xi- rekenkundig gemiddelde]/s
(geeft aantal standaardafwijkingen boven of onder gemiddelde weer)
3. Maatstaven voor symmetrie (vorm): informatie over scheefheid verdeling
 Volledige symmetrie: modus/mediaan/gemiddeldes vallen samen en zijn spiegel-as
 Positieve asymmetrie: rechtsscheef dus helt naar (L)inks [negatief andersom]
 Empirische coëfficiënt Pearson: vergelijking mediaan en rek.gem. t.o.v. s
o Positief: positief asymmetrisch
o Nul: symmetrisch
o Negatief: negatief asymmetrisch
 Coëfficiënt Yule & Kendall: zelfde resultaten als empirische Pearson
 Oneven centrale momenten (tot 1e,3e,5e,…macht): zijn bij symmetrie gelijk aan nul
 Coëfficiënt Fischer (g1): derde centraal momenten (m 3)/s3
[g>0: positieve asymmetrie, g<0 negatieve asymmetrie]
 Coëfficiënt Pearson (b1): kwadrateren van Fisher (geeft geen richting want altijd positief)
4. Maatstaven voor kurtosis (vorm): platykurtisch, mesokurtisch, leptokurtisch
 Coëfficiënt Pearson (b2): m4/s4 → =3: meso, >3: lepto, <3: platy
 Coëfficiënt Fisher (g2): Pearson-3
$15.12
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
willemvanaquitanië Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
15
Member since
4 year
Number of followers
11
Documents
10
Last sold
1 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions