100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Exam (elaborations) TEST BANK FOR Functions of One Complex Variable I By Andreas Kleefeld

Rating
-
Sold
-
Pages
166
Grade
A+
Uploaded on
16-11-2021
Written in
2021/2022

Exam (elaborations) TEST BANK FOR Functions of One Complex Variable I By Andreas Kleefeld Solutions Manual for Functions of One Complex Variable I, Second Edition1 © Copyright by Andreas Kleefeld, 2009 All Rights Reserved2 1by John B. Conway 2Last updated on January, 7th 2013 Contents 1 The Complex Number System 1 1.1 The real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The field of complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 The complex plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Polar representation and roots of complex numbers . . . . . . . . . . . . . . . . . . . . . 5 1.5 Lines and half planes in the complex plane . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 The extended plane and its spherical representation . . . . . . . . . . . . . . . . . . . . . 7 2 Metric Spaces and the Topology of C 9 2.1 Definitions and examples of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Sequences and completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Uniform convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Elementary Properties and Examples of Analytic Functions 21 3.1 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Analytic functions as mappings. Möbius transformations . . . . . . . . . . . . . . . . . . 31 4 Complex Integration 42 4.1 Riemann-Stieltjes integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Power series representation of analytic functions . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Zeros of an analytic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 The index of a closed curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 Cauchy’s Theorem and Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6 The homotopic version of Cauchy’s Theorem and simple connectivity . . . . . . . . . . . 63 4.7 Counting zeros; the Open Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . 66 4.8 Goursat’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Singularities 68 5.1 Classification of singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3 The Argument Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 6 The Maximum Modulus Theorem 84 6.1 The Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2 Schwarz’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 Convex functions and Hadamard’s Three Circles Theorem . . . . . . . . . . . . . . . . . 88 6.4 The Phragmén-Lindelöf Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Compactness and Convergence in the Space of Analytic Functions 93 7.1 The space of continuous functions C(G, ) . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 Spaces of analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.3 Spaces of meromorphic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.4 The Riemann Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.5 The Weierstrass Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6 Factorization of the sine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.7 The gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.8 The Riemann zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8 Runge’s Theorem 123 8.1 Runge’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 Simple connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.3 Mittag-Leffler’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9 Analytic Continuation and Riemann Surfaces 130 9.1 Schwarz Reflection Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.2 Analytic Continuation Along a Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.3 Monodromy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.4 Topological Spaces and Neighborhood Systems . . . . . . . . . . . . . . . . . . . . . . . 132 9.5 The Sheaf of Germs of Analytic Functions on an Open Set . . . . . . . . . . . . . . . . . 133 9.6 Analytic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 9.7 Covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 10 Harmonic Functions 137 10.1 Basic properties of harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.2 Harmonic functions on a disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.3 Subharmonic and superharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10.4 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.5 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11 Entire Functions 151 11.1 Jensen’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 11.2 The genus and order of an entire function . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.3 Hadamard Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12 The Range of an Analytic Function 161 12.1 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.2 The Little Picard Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.3 Schottky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.4 The Great Picard Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4 Chapter 1 The Complex Number System 1.1 The real numbers No exercises are assigned in this section. 1.2 The field of complex numbers Exercise 1. Find the real and imaginary parts of the following: 1 z ; z − a z + a (a 2 R); z3; 3 + 5i 7i + 1 ; 0BBBB@ −1 + ip3 2 1CCCCA 3 ; 0BBBB@ −1 − ip3 2 1CCCCA 6 ; in; 1 + i p2 !n for 2  n  8. Solution. Let z = x + iy. Then a) Re 1 z ! = x x2 + y2 = Re(z) |z|2 Im 1 z ! = − y x2 + y2 = − Im(z) |z|2 b) Re  z − a z + a  = x2 + y2 − a2 x2 + y2 + 2ax + a2 = |z|2 − a2 |z|2 + 2aRe(z) + a2 Im  z − a z + a  = 2ya x2 + y2 + 2xa + a2 = 2Im(z)a |z|2 + 2aRe(z) + a2 c) Re  z3  = x3 − 3xy2 = Re(z)3 − 3Re(z)Im(z)2 Im  z3  = 3x2y − y3 = 3Re(z)2Im(z) − Im(z)3 1 d) Re 3 + 5i 7i + 1 ! = 19 25 Im 3 + 5i 7i + 1 ! = − 8 25 e) Re 0BBBBBB@ 0BBBB@ −1 + ip3 2 1CCCCA 31CCCCCCA = 1 Im 0BBBBBB@ 0BBBB@ −1 + ip3 2 1CCCCA 31CCCCCCA = 0 f) Re 0BBBBBB@ 0BBBB@ −1 − ip3 2 1CCCCA 61CCCCCCA = 1 Im 0BBBBBB@ 0BBBB@ −1 − ip3 2 1CCCCA 61CCCCCCA = 0 g) Re (in) = 8>>>>><>>>>>: 0, n is odd 1, n 2 {4k : k 2 Z} −1, n 2 {2 + 4k : k 2 Z} Im(in) = 8>>>>><>>>>>: 0, n is even 1, n 2 {1 + 4k : k 2 Z} −1, n 2 {3 + 4k : k 2 Z} 2 h) Re 1 + i p2 !n! = 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>: 0, n = 2 − p2 2 , n = 3 −1, n = 4 − p2 2 , n = 5 0, n = 6 p2 2 , n = 7 1, n = 8 Im 1 + i p2 !n! = 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>: 1, n = 2 p2 2 , n = 3 0, n = 4 − p2 2 , n = 5 −1, n = 6 − p2 2 , n = 7 0, n = 8 Exercise 2. Find the absolute value and conjugate of each of the following: −2 + i; −3; (2 + i)(4 + 3i); 3 − i p2 + 3i ; i i + 3 ; (1 + i)6; i17. Solution. It is easy to calculate: a) z = −2 + i, |z| = p5, ¯z = −2 − i b) z = −3, |z| = 3, ¯z = −3 c) z = (2 + i)(4 + 3i) = 5 + 10i, |z| = 5p5, ¯z = 5 − 10i d z = 3 − i p2 + 3i , |z| = 1 11 p110, ¯z = 3 + i p2 − 3i e) z = i i + 3 = 1 10 + 3 10 i, |z| = 1 10 p10, ¯z = 1 10 − 3 10 i f) z = (1 + i)6 = −8i, |z| = 8, ¯z = 8i g) i17 = i, |z| = 1, ¯z = −i Exercise 3. Show that z is a real number if and only if z = ¯z. 3 Solution. Let z = x + iy. ): If z is a real number, then z = x (y = 0). This implies ¯z = x and therefore z = ¯z. ,: If z = ¯z, then we must have x + iy = x − iy for all x, y 2 R. This implies y = −y which is true if y = 0 and therefore z = x. This means that z is a real number. Exercise 4. If z and w are complex numbers, prove the following equations: |z + w|2 = |z|2 + 2Re(zw¯ ) + |w|2. |z − w|2 = |z|2 − 2Re(zw¯ ) + |w|2. |z + w|2 + |z − w|2 = 2  |z|2 + |w|2  . Solution. We can easily verify that ¯¯z = z. Thus |z + w|2 = (z + w)(z + w) = (z + w)(z¯ + w¯ ) = zz¯ + zw¯ + wz¯ + ww¯ = |z|2 + |w|2 + zw¯ + z¯w = |z|2 + |w|2 + z ¯ w + ¯z¯¯w = |z|2 + |w|2 + zw¯ + zw¯ = |z|2 + |w|2 + 2 zw¯ + zw¯ 2 = |z|2 + |w|2 + 2Re(zw¯ ) = |z|2 + 2Re(zw¯ ) + |w|2. |z − w|2 = (z − w)(z − w) = (z − w)(z¯ − w¯ ) = zz¯ − zw¯ − wz¯ + ww¯ = |z|2 + |w|2 − zw¯ − z¯w = |z|2 + |w|2 − z ¯ w − ¯z¯¯w = |z|2 + |w|2 − zw¯ − zw¯ = |z|2 + |w|2 − 2 zw¯ + zw¯ 2 = |z|2 + |w|2 − 2Re(zw¯ ) = |z|2 − 2Re(zw¯ ) + |w|2. |z + w|2 + |z − w|2 = |z|2 + Re(zw¯ ) + |w|2 + |z|2 − Re(zw¯ ) + |w|2 = |z|2 + |w|2 + |z|2 + |w|2 = 2|z|2 + 2|w|2 = 2  |z|2 + |w|2  . Exercise 5. Use induction to prove that for z = z1 + . . . + zn; w = w1w2 . . .wn: |w| = |w1| . . . |wn|; z¯ = z¯1 + . . . + z¯n;w¯ = w¯ 1 . . . w¯ n. Solution. Not available. Exercise 6. Let R(z) be a rational function of z. Show that R(z) = R(¯z) if all the coefficients in R(z) are real. Solution. Let R(z) be a rational function of z, that is R(z) = anzn + an−1zn−1 + . . . a0 bmzm + bm−1zm−1 + . . . b0 where n,m are nonnegative integers. Let all coefficients of R(z) be real, that is a0, a1, . . . , an, b0, b1, . . . , bm 2 R. Then R(z) = anzn + an−1zn−1 + . . . a0 bmzm + bm−1zm−1 + . . . b0 = anzn + an−1zn−1 + . . . a0 bmzm + bm−1zm−1 + . . . b0 = anzn + an−1zn−1 + . . . a0 bmzm + bm−1zm−1 + . . . b0 = an ¯zn + an−1 ¯zn−1 + . . . a0 bm¯zm + bm−1 ¯zm−1 + . . . b0 = R(¯z). 4 1.3 The complex plane Exercise 1. Prove (3.4) and give necessary and sufficient conditions for equality. Solution. Let z and w be complex numbers. Then ||z| − |w|| = ||z − w + w| − |w||  ||z − w| + |w| − |w|| = ||z − w|| = |z − w| Notice that |z| and |w| is the distance from z and w, respectively, to the origin while |z − w| is the distance between z and w. Considering the construction of the implied triangle, in order to guarantee equality, it is necessary and sufficient that ||z| − |w|| = |z − w| () (|z| − |w|)2 = |z − w|2 () (|z| − |w|)2 = |z|2 − 2Re(zw¯ ) + |w|2 () |z|2 − 2|z||w| + |w|2 = |z|2 − 2Re(zw¯ ) + |w|2 () |z||w| = Re(zw¯ ) () |zw¯ | = Re(zw¯ ) Equivalently, this is zw¯  0. Multiplying this by w w , we get zw¯ · w w = |w|2 · zw  0 if w , 0. If t = zw =  1 |w|2  · |w|2 · zw . Then t  0 and z = tw. Exercise 2. Show that equality occurs in (3.3) if and only if zk/zl  0 for any integers k and l, 1  k, l  n, for which zl , 0. Solution. Not available. Exercise 3. Let a 2 R and c > 0 be fixed. Describe the set of points z satisfying |z − a| − |z + a| = 2c for every possible choice of a and c. Now let a be any complex number and, using a rotation of the plane, describe the locus of points satisfying the above equation. Solution. Not available. 1.4 Polar representation and roots of complex numbers Exercise 1. Find the sixth roots of unity. Solution. Start with z6 = 1 and z = rcis(), therefore r6cis(6) = 1. Hence r = 1 and  = 2k 6 with k 2 {−3, −2, −1, 0, 1, 2}. The following table gives a list of principle values of arguments and the corresponding value of the root of the equation z6 = 1. 0 = 0 z0 = 1 1 =  3 z1 = cis( 3 ) 2 = 2 3 z2 = cis( 2 3 ) 3 =  z3 = cis() = −1 4 = −2 3 z4 = cis( −2 3 ) 5 = − 3 z5 = cis( − 3 ) 5 Exercise 2. Calculate the following: a) the square roots of i b) the cube roots of i c) the square roots of p3 + 3i Solution. c) The square roots of p3 + 3i. Let z = p3 + 3i. Then r = |z| = qp3 2 + 32 = p12 and = tan−1  3 p3  =  3 . So, the 2 distinct roots of z are given by p2 r  cos +2k n + i sin +2k n  where k = 0, 1. Specifically, pz = p4 12 cos 3 + 2k 2 + i sin 3 + 2k 2 ! . Therefore, the square roots of z, zk, are given by z0 = p4 12  cos  6 + i sin  6  = p4 12  p3 2 + 1 2 i  z1 = p4 12  cos 7 6 + i sin 7 6  = p4 12  − p3 2 − 1 2 i  . So, in rectangular form, the second roots of z are given by  4p108 2 , 4p12 2  and  − 4p108 2 , − 4p12 2  . Exercise 3. A primitive nth root of unity is a complex number a such that 1, a, a2, ..., an−1 are distinct nth roots of unity. Show that if a and b are primitive nth and mth roots of unity, respectively, then ab is a kth root of unity for some integer k. What is the smallest value of k? What can be said if a and b are nonprimitive roots of unity? Solution. Not available. Exercise 4. Use the binomial equation (a + b)n = Xn k=0 n k ! an−kbk, where n k ! = n! k!(n − k)! , and compare the real and imaginary parts of each side of de Moivre’s formula to obtain the formulas: cos n = cosn  − n 2 ! cosn−2  sin2  + n 4 ! cosn−4  sin4  − . . . sin n = n 1 ! cosn−1  sin  − n 3 ! cosn−3  sin3  + . . . Solution. Not available. Exercise 5. Let z = cis 2 n for an integer n  2. Show that 1 + z + . . . + zn−1 = 0. 6 Solution. The summation of the finite geometric sequence 1, z, z2, . . . , zn−1 can be calculated as Pn j=1 z j−1 = zn−1 z−1 . We want to show that zn is an nth root of unity. So, using de Moivre’s formula, zn =  cis  2 n n = cis  n · 2 n  = cis(2) = 1. It follows that 1 + z + z2 + ... + zn−1 = zn−1 z−1 = 1−1 z−1 = 0 as required. Exercise 6. Show that '(t) = cis t is a group homomorphism of the additive group R onto the multiplicative group T = {z : |z| = 1}. Solution. Not available. Exercise 7. If z 2 C and Re(zn)  0 for every positive integer n, show that z is a non-negative real number. Solution. Let n be an arbitrary but fixed positive integer and let z 2 C and Re(zn)  0. Since zn = rn(cos(n) + i sin(n)), we have Re(zn) = rn cos(n)  0. If z = 0, then we are done, since r = 0 and Re(zn) = 0. Therefore, assume z , 0, then r > 0. Thus Re(zn) = rn cos(n)  0 implies cos(n)  0 for all n. This implies  = 0 as we will show next. Clearly,  < [/2, 3/2]. If  2 (0, /2), then there exists a k 2 {2, 3, . . .} such that  k+1   <  k . If we choose n = k + 1, we have   n < (k + 1) k which is impossible since cos(n)  0. Similarly, we can derive a contradiction if we assume  2 (3/2, 2). Then 2 − /k   < 2 − /(k + 1) for some k 2 {2, 3, . . .}. 1.5 Lines and half planes in the complex plane Exercise 1. Let C be the circle {z : |z − c| = r}, r > 0; let a = c + rcis and put L =  z : Im  z − a b  = 0  where b = cis . Find necessary and sufficient conditions in terms of that L be tangent to C at a. Solution. Not available. 1.6 The extended plane and its spherical representation Exercise 1. Give the details in the derivation of (6.7) and (6.8). Solution. Not available. Exercise 2. For each of the following points in C, give the corresponding point of S : 0, 1 + i, 3 + 2i

Show more Read less











Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
November 16, 2021
Number of pages
166
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

, Solutions Manual for
Functions of One Complex Variable I, Second Edition 1




© Copyright by Andreas Kleefeld, 2009
All Rights Reserved2




1 by John B. Conway
2 Last updated on January, 7th 2013

,Contents

1 The Complex Number System 1
1.1 The real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The field of complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The complex plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Polar representation and roots of complex numbers . . . . . . . . . . . . . . . . . . . . . 5
1.5 Lines and half planes in the complex plane . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 The extended plane and its spherical representation . . . . . . . . . . . . . . . . . . . . . 7

2 Metric Spaces and the Topology of C 9
2.1 Definitions and examples of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Sequences and completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Uniform convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Elementary Properties and Examples of Analytic Functions 21
3.1 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Analytic functions as mappings. Möbius transformations . . . . . . . . . . . . . . . . . . 31

4 Complex Integration 42
4.1 Riemann-Stieltjes integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Power series representation of analytic functions . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Zeros of an analytic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 The index of a closed curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Cauchy’s Theorem and Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 The homotopic version of Cauchy’s Theorem and simple connectivity . . . . . . . . . . . 63
4.7 Counting zeros; the Open Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Goursat’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Singularities 68
5.1 Classification of singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 The Argument Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



3

, 6 The Maximum Modulus Theorem 84
6.1 The Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Schwarz’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Convex functions and Hadamard’s Three Circles Theorem . . . . . . . . . . . . . . . . . 88
6.4 The Phragmén-Lindelöf Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Compactness and Convergence in the Space of Analytic Functions 93
7.1 The space of continuous functions C(G, Ω) . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Spaces of analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Spaces of meromorphic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 The Riemann Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5 The Weierstrass Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6 Factorization of the sine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.7 The gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.8 The Riemann zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Runge’s Theorem 123
8.1 Runge’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Simple connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.3 Mittag-Leffler’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9 Analytic Continuation and Riemann Surfaces 130
9.1 Schwarz Reflection Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.2 Analytic Continuation Along a Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Monodromy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4 Topological Spaces and Neighborhood Systems . . . . . . . . . . . . . . . . . . . . . . . 132
9.5 The Sheaf of Germs of Analytic Functions on an Open Set . . . . . . . . . . . . . . . . . 133
9.6 Analytic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.7 Covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 Harmonic Functions 137
10.1 Basic properties of harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.2 Harmonic functions on a disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.3 Subharmonic and superharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.4 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.5 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11 Entire Functions 151
11.1 Jensen’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2 The genus and order of an entire function . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3 Hadamard Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12 The Range of an Analytic Function 161
12.1 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.2 The Little Picard Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.3 Schottky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.4 The Great Picard Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Expert001 Chamberlain School Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
797
Member since
4 year
Number of followers
566
Documents
1190
Last sold
1 week ago
Expert001

High quality, well written Test Banks, Guides, Solution Manuals and Exams to enhance your learning potential and take your grades to new heights. Kindly leave a review and suggestions. We do take pride in our high-quality services and we are always ready to support all clients.

4.2

159 reviews

5
104
4
18
3
14
2
7
1
16

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions