Section 1.2
1.1 A matrix is an orthogonal matrix if
XTX = I
Is the following matrix an orthogonal matrix?
⎛ −1 −1 ⎞
1⎜ 1 −1 ⎟
⎟
X= ⎜
2⎜ −1 1 ⎟
⎜⎝ 1 1 ⎟⎠
Solution:
x={{-1.,-1},{1,-1},{-1,1},{1,1}}/2;
Transpose[x].x//MatrixForm
yields
⎛ 1 0 ⎞
⎜ ⎟
⎝ 0 1 ⎠
Therefore, X is an orthogonal matrix.
1.2 If
⎛ 1 −1 ⎞ ⎛ 1 1 ⎞
A=⎜ ⎟ B=⎜ ⎟
⎝ 2 −1 ⎠ ⎝ 4 −1 ⎠
does (A + B)2 = A 2 + B 2?
Solution:
a={{1,-1},{2,-1}};
b={{1,1},{4,-1}};
((a+b).(a+b)-a.a-b.b)//MatrixForm
yields
⎛ 0 0 ⎞
⎜ ⎟
⎝ 0 0 ⎠
Therefore, the expressions are equal.
2
,1.3 Given the two matrices
⎛ 4 1 ⎞
⎛ 1 4 −3 ⎞
A=⎜ and B=⎜ 2 6 ⎟
⎝ 2 5 4 ⎟⎠ ⎜ ⎟
⎜⎝ 0 3 ⎟⎠
Find the matrix products AB and BA.
Solution:
⎛ 4 1 ⎞
⎛ 1 4 −3 ⎞ ⎜ ⎛ 12 16 ⎞
AB = ⎜ 2 6 ⎟ =⎜
⎝ 2 5 4 ⎠ ⎜⎜ 0 3 ⎟⎟ ⎝ 18 44 ⎟⎠
⎟
⎝ ⎠
⎛ 4 1 ⎞ ⎛ 6 21 −8 ⎞
⎜ ⎟ ⎛ 1 4 −3 ⎞ ⎜
BA = 2 6 ⎜ = 14 38 18 ⎟
⎜ ⎟ ⎝ 2 5 4 ⎟⎠ ⎜ ⎟
⎜⎝ 0 3 ⎟⎠ ⎜⎝ 6 15 12 ⎟⎠
Aa={{1,4,-3},{2,5,4}};
Bb={{4,1},{2,6},{0,3}};
Aa.Bb//MatrixForm
Bb.Aa//MatrixForm
1.4 Given the following matrices and their respective orders: A (n´m), B (p´m), and C (n´s).
Show one way in which these three matrices can be multiplied. What is the order of the resulting
matrix?
Solution:
C T ABT → (n × s)T (n × m)( p × m)T → (s × n)(n × m)(m × p) → (s × p)
1.5 Given
⎛ ab b2 ⎞
A=⎜ ⎟
⎝ −a 2 −ab ⎠
Determine A2.
Solution: From Eq. (1.13)
3
, ⎛ a11 a12 ⎞ ⎛ a11 a12 ⎞ ⎛ a112 + a12 a21 a12 ( a11 + a22 ) ⎞
AA = ⎜ ⎟⎜ ⎟ =⎜ ⎟
⎝ 21 22 ⎠ ⎝ 21 22 ⎠ ⎜⎝ a21 ( a11 + a22 ) a21a12 + a22 ⎟⎠
2
a a a a
⎛ a 2b 2 − a 2b 2 b 2 ( ab − ab ) ⎞
=⎜ ⎟ =0
⎜⎝ −a 2 ( ab − ab ) −a 2b 2 + a 2b 2 ⎟⎠
Aa={{a b, b^2},{-a^2,-a b}};
Aa.Aa//MatrixForm
1.6 Given the matrix
⎛ −4 −3 −1 ⎞
A=⎜ 2 1 1 ⎟
⎜ ⎟
⎝ 4 −2 4 ⎠
Determine the value of 4I - 4A - A2 + A3.
Solution:
⎛ 6 11 −3 ⎞
A = −2 −7 3 ⎟
2 ⎜
⎜ ⎟
⎜⎝ −4 −22 10 ⎟⎠
⎛ −14 −1 −7 ⎞
A3 = ⎜ 6 −7 7 ⎟
⎜ ⎟
⎜⎝ 12 −30 22 ⎟⎠
Then,
⎛ 1 0 0 ⎞ ⎛ −4 −3 −1 ⎞
2 3⎜ ⎟
4I − 4 A − A + A = 4 0 1 0 − 4 ⎜ 2 1 1 ⎟
⎜ ⎟ ⎜ ⎟
⎜⎝ 0 0 1 ⎟⎠ ⎝ 4 −2 4 ⎠
⎛ 6 11 −3 ⎞ ⎛ −14 −1 −7 ⎞
− ⎜ −2 −7 3 ⎟ + ⎜ 6 −7 7 ⎟
⎜ ⎟ ⎜ ⎟
⎜⎝ −4 −22 10 ⎟⎠ ⎜⎝ 12 −30 22 ⎟⎠
⎛ 0 0 0 ⎞
=⎜ 0 0 0 ⎟
⎜ ⎟
⎜⎝ 0 0 0 ⎟⎠
Mathematica verification
Aa={{-4,-3,-1},{2,1,1},{4,-2,4}};
4