100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Exam (elaborations) TEST BANK FOR Signals and Systems Analysis of Signals Through Linear Systems By M.J. Roberts (Solution manual)

Rating
-
Sold
-
Pages
682
Grade
A+
Uploaded on
13-11-2021
Written in
2021/2022

Exam (elaborations) TEST BANK FOR Signals and Systems Analysis of Signals Through Linear Systems By M.J. Roberts (Solution manual) Mathematical Description of Signals Solutions 1. If g(t) = 7e−2t −3 write out and simplify (a) g(3) = 7e−9 (b) g(2 − t) = 7e−2(2−t)−3 = 7e−7+2t (c) g t e t 10 4 7 5 11 +      = − − (d) g( jt) = 7e− j 2t −3 (e) g g cos jt jt e e e e t ( ) + (− ) j t j t = + − = ( ) − − 2 7 2 3 7 2 2 2 3 (f) g g cos jt jt e e t jt jt −      + − −      = + = ( ) − 3 2 3 2 2 7 2 7 2. If g(x) = x2 − 4x + 4 write out and simplify (a) g(z) = z2 − 4z + 4 (b) g(u + v) = (u + v) − (u + v) + = u + v + uv − u − v + 2 4 4 2 2 2 4 4 4 (c) g(e jt ) = (e jt ) − e jt + = e j t − e jt + = (e jt − ) 2 2 2 4 4 4 4 2 (d) g(g(t)) = g(t2 − 4t + 4) = (t2 − 4t + 4)2 − 4(t2 − 4t + 4) + 4 g(g(t)) = t4 − 8t3 + 20t2 −16t + 4 (e) g(2) = 4 − 8 + 4 = 0 3. What would be the numerical value of “g” in each of the following MATLAB instructions? (a) t = 3 ; g = sin(t) ; 0.1411 (b) x = 1:5 ; g = cos(pi*x) ; [-1,1,-1,1,-1] (c) f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w) ; M. J. Roberts - 7/12/03 Solutions 2-2 1 . . . . . . . . + + − −       j j j j 4. Let two functions be defined by x , sin , sin 1 1 20 0 1 20 0 t t t ( ) = ( )≥ − ( )<  π π and x , sin , sin 2 2 0 2 0 t t t t t ( ) = ( )≥ − ( )<  π π . Graph the product of these two functions versus time over the time range, −2 < t < 2. t -2 2 x(t) -2 2 5. For each function, g(t), sketch g(−t), −g(t), g(t −1), and g(2t). (a) (b) t g(t) 2 4 t g(t) 1 -1 3 -3 t g(-t) -2 4 t g(-t) 1 -1 3 -3 t -g(t) 2 4 t -g(t) 1 -1 3 -3 t g(t-1) 1 3 4 t g(t-1) 1 2 3 -3 t g(2t) 1 4 t g(2t) 1 3 -3 2 1 2 - 6. A function, G( f ), is defined by M. J. Roberts - 7/12/03 Solutions 2-3 G f e rect f j f ( ) =      − 2 2 π . Graph the magnitude and phase of G( f −10) + G( f +10) over the range, −20 < f < 20. G f G f e rect rect f e f ( − ) + ( + ) = j f j f −      + +      10 10 − ( − ) − ( + ) 10 2 10 2 2π 10 2π 10 f -20 20 |G( f )| 1 f -20 20 Phase of G( f ) -π π 7. Sketch the derivatives of these functions. (All sketches at end.) (a) g(t) = sinc(t) ′( ) = ( )− ( ) ( ) = ( )− ( ) g cos sin cos sin t t t t t t t t t π π π π π π π π π 2 2 2 (b) g(t) = (1− e−t )u(t) ′( ) = ≥ <   = ( ) − g − , , t u e t t e t t t 0 0 0 t -4 4 x(t) -1 1 t -4 4 dx/dt -1 1 t -1 4 x(t) -1 1 t -1 4 dx/dt -1 1 (a) (b) 8. Sketch the integral from negative infinity to time, t, of these functions which are zero for all time before time, t = 0. M. J. Roberts - 7/12/03 Solutions 2-4 g(t) t 1 1 2 3 12 g(t) t 1 1 2 3 ∫ g(t) dt ∫ g(t) dt t 1 1 2 3 12 t 1 1 2 3 9. Find the even and odd parts of these functions. (a) g(t) = 2t2 − 3t + 6 ge t t t t t t ( ) = t − + + −( ) − −( )+ = + = + 2 3 6 2 3 6 2 4 12 2 2 6 2 2 2 2 go t t t t t t ( ) = t − + − −( ) + −( )− = − = − 2 3 6 2 3 6 2 6 2 3 2 2 (b) g cos t t ( ) = −      20 40 4 π π g cos cos e t t t ( ) = −      + − −     20 40 4 20 40 4 2 π π π π Using cos z z cos z cos z sin z sin z 1 2 1 2 1 2 ( + ) = ( ) ( ) − ( ) ( ) g cos cos sin sin cos cos sin sin e t t t t t ( ) = ( ) −      − ( ) −            + − ( ) −      − − ( ) −                      20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π g cos cos sin sin cos cos sin sin e t t t t t ( ) = ( )      + ( )            + ( )      − ( )                      20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π M. J. Roberts - 7/12/03 Solutions 2-5 g cos cos cos e t t t ( ) =      20 ( ) = ( ) 4 40 20 2 40 π π π g cos cos o t t t ( ) = −      − − −      20 40 4 20 40 4 2 π π π π Using cos z z cos z cos z sin z sin z 1 2 1 2 1 2 ( + ) = ( ) ( ) − ( ) ( ) g cos cos sin sin cos cos sin sin o t t t t t ( ) = ( ) −      − ( ) −            − − ( ) −      − − ( ) −                      20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π g cos cos sin sin cos cos sin sin o t t t t t ( ) = ( )      + ( )            − ( )      − ( )                      20 40 4 40 4 20 40 4 40 4 2 π π π π π π π π g sin sin sin ot t t ( ) =      20 ( ) = ( ) 4 40 20 2 40 π π π (c) g t t t t ( ) = − + + 2 3 6 1 2 ge t t t t t t ( ) = t − + + + + + − 2 3 6 1 2 3 6 1 2 2 2 ge t t t t t t t ( ) = t t ( − + )( − ) + ( + + )( + ) ( + )( − ) 2 3 6 1 2 3 6 1 1 1 2 2 2 ge t t t t t t ( ) = + + ( − ) = + − 4 12 6 2 1 6 5 1 2 2 2 2 2 go t t t t t t ( ) = t − + + − + + − 2 3 6 1 2 3 6 1 2 2 2 M. J. Roberts - 7/12/03 Solutions 2-6 go t t t t t t t ( ) = t t ( − + )( − ) − ( + + )( + ) ( + )( − ) 2 3 6 1 2 3 6 1 1 1 2 2 2 go t t t t t t t t ( ) = − − − ( − ) = − + − 6 4 12 2 1 2 9 1 3 2 2 2 (d) g(t) = sinc(t) g sin sin sin e t t t t t t t ( ) = ( ) + (− ) − = ( ) π π π π π 2 π go (t) = 0 (e) g(t) = t(2 − t2)(1+ 4t2) g(t) = t ( − t )( + t ) odd even even { 2 2 1 4 2 Therefore g(t) is odd, g g e o (t) = 0 and (t) = t(2 − t2)(1+ 4t2) (f) g(t) = t(2 − t)(1+ 4t) ge t t t t t t t ( ) = (2 − )(1+ 4 ) + (− )(2 + )(1− 4 ) 2 ge(t) = 7t2 go t t t t t t t ( ) = (2 − )(1+ 4 ) − (− )(2 + )(1− 4 ) 2 go (t) = t(2 − 4t2) 10. Sketch the even and odd parts of these functions. M. J. Roberts - 7/12/03 Solutions 2-7 t g(t) 1 1 t g(t) 1 2 1 -1 t g (t) 1 1 t g (t) 1 2 1 -1 t g (t) 1 1 t g (t) 1 2 1 -1 e e o o (a) (b) 11. Sketch the indicated product or quotient, g(t), of these functions. t 1 -1 1 -1 t -1 1 1 g(t) Multiplication t 1 -1 1 -1 t 1 -1 -1 1 g(t) g(t) g(t) Multiplication (a) (b) t 1 -1 1 -1 t -1 1 1 -1 M. J. Roberts - 7/12/03 Solutions 2-8 t 1 1 g(t) Multiplication (c) t -1 1 t 1 1 g(t) g(t) Multiplication (d) t 1 1 t -1 -1 1 g(t) t -1 1 1 (e) (f) -1 1 t 1 -1 t -1 1 1 g(t) Multiplication ... ... t 1 1 -1 t 1 -1 1 g(t) Multiplication g(t) t -1 1 1 -1 ... ... g(t) t 1 1 -1 t 1 1 g(t) Division Division (g) t -1 -1 -1 1 1 1 g(t) g(t) (h) t 1 t π -1 1 1 t g(t) t -1 12. Use the properties of integrals of even and odd functions to evaluate these integrals in the quickest way. M. J. Roberts - 7/12/03 Solutions 2-9 (a) 2 2 2 2 4 1 1 1 1 1 1 0 1 ( + ) = + = = − − − ∫ t dt ∫ dt ∫ t dt ∫ dt even odd { { (b) 4 10 8 5 4 10 8 5 8 10 8 10 1 20 1 20 1 20 1 20 1 20 1 20 0 1 20 cos π sin π cos π sin π cos π π [ ( t) + ( t)]dt = ( t)dt + ( t)dt = ( t)dt = − − − ∫ ∫ ∫ ∫ even odd (c) 4 10 0 1 20 1 20 t tdt odd even odd { 14243 1 2 4 3 4 cos( π ) = − ∫ (d) t t dt t t dt t t t dt odd odd even { 14243 1 2 4 3 4 sin sin cos cos 10 2 10 2 10 10 10 10 1 10 1 10 0 1 10 0 1 10 0 1 10 π π π π π π ( ) = ( ) = − ( ) + ( )       − ∫ ∫ ∫ t tdt t odd odd even { 14243 1 2 4 3 4 sin sin 10 2 1 100 10 10 1 50 1 10 1 10 2 0 1 10 π π π π π ( ) == + ( ) ( )       = − ∫ (e) e− t dt e t dt e tdt e t e − − − − − ∫ = ∫ = ∫ = [− ] = ( − ) ≈ even { 1 1 0 1 0 1 0 2 2 2 1 2 1 1 1.264 (f) t e t dt odd even odd { { 123 − − ∫ = 1 1 0 13. Find the fundamental period and fundamental frequency of each of these functions. (a) g(t) = 10cos(50πt) f T 0 0 25 1 25 = Hz , = s (b) g cos t t ( ) = +      10 50 4 π π f T 0 0 25 1 25 = Hz , = s (c) g(t) = cos(50πt) + sin(15πt) f T 0 0 25 15 2 2 5 1 2 5 0 4 =      GCD , = . , = = . Hz . s (d) g cos sin cos t t t t ( ) = ( ) + ( ) + −      2 3 5 3 4 π π π π M. J. Roberts - 7/12/03 Solutions 2-10 f T 0 0 1 3 2 5 2 1 2 1 1 2 2 =      GCD , , = Hz , = = s 14. Find the fundamental period and fundamental frequency of g(t). g(t) t ... ... 1 t ... ... 1 g(t) t ... ... 1 (a) (b) + t ... ... 1 g(t) t ... ... 1 (c) + (a) f T 0 0 3 1 3 = Hz and = s (b) f T 0 0 6 4 2 1 2 = GCD( , ) = Hz and = s (c) f T 0 0 = GCD(6,5) = 1Hz and = 1 s 15. Plot these DT functions. (a) x n cos sin n n [ ]=      −  ( − )     4 2 12 3 2 2 8 π π , −24 ≤ n < 24 n -24 24 x[n] -7 7 (b) xn ne n [ ]= − 3 5 , −20 ≤ n < 20 n -20 20 x[n] -6 6 (c) x n n n [ ] =      21 + 2 14 2 3 , −5 ≤ n < 5 M. J. Roberts - 7/12/03 Solutions 2-11 n -5 5 x[n] -2000 2000 16. Let x cos 1 5 2 8 n n [ ]=      π and x2 8 6 2 n e n [ ]= − −     . Plot the following combinations of those two signals over the DT range, −20 ≤ n < 20. If a signal has some defined and some undefined values, just plot the defined values. (a) x[n] = x [n]x [n] 1 2 n -20 20 x[n] -40 40 (b) x[n] = 4 x [n] + 2 x [n] 1 2 n -20 20 x[n] -40 20 (c) x[n] = x [ n]x [ n] 1 2 2 3 n -20 20 x[n] -40 20 (d) x x x n n n [ ]= [ ] [− ] 1 2 2 n -20 20 x[n] -50000 10000 (e) x n x x n n [ ]=       +       2 2 4 3 1 2 n -20 20 x[n] -40 5 M. J. Roberts - 7/12/03 Solutions 2-12 17.A function, g[n] is defined by g , , , n n n n n n [ ]= − <− − ≤ < ≤      2 4 4 1 4 1 . Sketch g[−n], g[2 − n], g[2n] and g n 2       . n -10 10 g[n] -4 4 n -10 10 g[- n] -4 4 n -10 10 g[2- n] -4 4 n -10 10 g[2n] -4 4 n -10 10 g[n/2] -4 4 18. Sketch the backward differences of these DT functions. n -4 20 g[n] -1 1 n -4 20 Δg[n-1] -1 1 n -4 20 g[n] -1 1 n -4 20 Δg[n-1] -1 1 n -4 20 g[n] = (n/10)2 4 n -4 20 Δg[n-1] -0.25 0.5 (a) (b) (c) 19. Sketch the accumulation, g[n], from negative infinity to n of each of these DT functions. M. J. Roberts - 7/12/03 Solutions 2-13 (a) h[n] =δ[n] (b) h[n] = u[n] (c) h n cos u n n [ ] =      [ ] 2 16 π (d) h n cos u n n [ ] =      [ ] 2 8 π (e) h n cos u n n [ ] =      [ + ] 2 16 8 π (a) n -16 16 h[n] 1 n -16 16 g[n] 1 (b) n -16 16 h[n] 1 n -16 16 g[n] 16 (c) n -16 16 h[n] -1 1 n -16 16 g[n] -3 3 (d) n -16 16 h[n] -1 1 n -16 16 g[n] -3 3 (e) n -16 16 h[n] -1 1 n -16 16 g[n] -3 3 20. Find and sketch the even and odd parts of these functions. (a) g[n] = u[n]− u[n − 4] (b) g n e u n n [ ]= [ ] − 4 (c) g n cos n [ ]=      2 4 π (d) g n sin u n n [ ] =      [ ] 2 4 π M. J. Roberts - 7/12/03 Solutions 2-14 n -10 10 g[n] -1 1 n -10 10 g e [n] -1 1 n -10 10 g o [n] -1 1 n -10 10 g[n] -1 1 n -10 10 g e [n] -1 1 n -10 10 g o [n] -1 1 n -10 10 g[n] -1 1 n -10 10 g e [n] -1 1 n -10 10 g o [n] -1 1 n -10 10 g[n] -1 1 n -10 10 g e [n] -1 1 n -10 10 g o [n] -1 1 21. Sketch g[n]. Multiplication Multiplication Multiplication Multiplication g [n] 1 g [n] 1 g[n] g[n] g[n] g[n] g [n] 2 g [n] 2 g [n] 1 g [n] 1 g [n] 2 n -10 10 -1 1 n -10 10 -1 1 n -4 20 -1 1 n -4 20 -1 1 n -4 20 -1 1 n -4 20 -1 1 n -10 10 -1 1 n -10 10 g[n] -1 1 (a) (b) (c) (d) M. J. Roberts - 7/12/03 Solutions 2-15 n -10 10 g[n] -1 1 (a) n -4 20 g[n] -1 1 (b) n -4 20 g[n] -1 1 (c) n -10 10 g[n] -1 1 (d) 22. Find the fundamental DT period and fundamental DT frequency of these functions. (a) g n cos n [ ]=      2 10 π N F 0 0 10 1 10 = , = (b) g n cos n [ ]=      π 10 N F 0 0 20 1 20 = , = (c) g n cos cos n n [ ]=      +      2 5 2 7 π π N F 0 0 35 1 35 = , = (d) gn e e j n j n [ ]= +− 2 20 2 20 π π N F 0 0 20 1 20 = , = (e) gn e e j n j n [ ]= + − − 2 3 2 4 π π N F 0 0 12 1 12 = , = 23. Graph the following functions and determine from the graphs the fundamental period of each one (if it is periodic). (a) g n sin cos n n [ ]=      +      5 2 4 8 2 6 π π (b) g n sin cos n n [ ]=      +      5 7 12 8 14 8 π π (c) g n Re e j n e j n [ ]= +       π − π 3 (d) g n Re e jn e j n [ ]= +       − 3 M. J. Roberts - 7/12/03 Solutions 2-16 n -24 24 g[n] -12 12 (a) n -24 24 g[n] -12 12 (b) n -24 24 g[n] -2 2 (c) n -24 24 g[n] -2 2 (d) N = 12 0 N = 6 0 N = 24 0 Not Periodic 24. Find the signal energy of these signals. (a) x(t) = 2rect(t) E t dt dt x = ( ) = = −∞ ∞ − ∫ 2 4 ∫ 4 2 1 2 1 2 rect (b) x(t) = A(u(t) − u(t −10)) E A t t dt A dt A x = ( ( ) − ( − )) = = −∞ ∞ ∫ u u 10 ∫ 10 2 2 0 10 2 (c) x(t) = u(t) − u(10 − t) E t t dt dt dt x = ( ) − ( − ) = + →∞ −∞ ∞ −∞ ∞ ∫ u u 10 ∫ ∫ 2 0 10 (d) x(t) = rect(t)cos(2πt) E t t dt t dt t dt x = ( ) ( ) = ( ) = ( + ( )) −∞ ∞ − − ∫ rect cos 2 ∫ cos 2 ∫ cos 1 2 1 4 2 2 1 2 1 2 1 2 1 2 π π π E dt t dt x= + ( )       = − − = ∫ ∫ 1 2 4 1 2 1 2 1 2 1 2 1 2 0 cos π (e) x(t) = rect(t)cos(4πt) M. J. Roberts - 7/12/03 Solutions 2-17 Ex = (t) ( t) dt = ( t)dt = ( + ( t))dt −∞ ∞ − − ∫ rect cos 4 ∫ cos 4 ∫ cos 1 2 1 8 2 2 1 2 1 2 1 2 1 2 π π π E dt t dt x= + ( )       = − − = ∫ ∫ 1 2 8 1 2 1 2 1 2 1 2 1 2 0 cos π (f) x(t) = rect(t)sin(2πt) E t t dt t dt t dt x = ( ) ( ) = ( ) = ( − ( )) −∞ ∞ − − ∫ rect sin 2 ∫ sin 2 ∫ cos 1 2 1 4 2 2 1 2 1 2 1 2 1 2 π π π E dt t dt x= − ( )       = − − = ∫ ∫ 1 2 4 1 2 1 2 1 2 1 2 1 2 0 cos π (g) x n Arect n N [ ]= [ ] 0 E A n A N A x N N N = [ ] = ( ) = ( + ) −∞ ∞ − Σ rect Σ 0 0 2 0 2 0 1 2 1 2 (h) x[n] = Aδ[n] xn A n E A n A A x [ ]= [ ] = [ ] = ( ) = −∞ ∞Σ Σ δ δ 2 2 0 0 1 2 (i) x n comb n N [ ]= [ ] 0 E n x N n mN = [ ] = ( )→∞ −∞ ∞ −∞ = ∞ Σcomb Σ 0 0 2 1 (j) x[n] = ramp[n] E n n x = [ ]= →∞ −∞ ∞ ∞ Σramp Σ 2 2 0 (k) x[n] = ramp[n]− 2ramp[n − 4] + ramp[n − 8] M. J. Roberts - 7/12/03 Solutions 2-18 Ex = [n]− [n − ] + [n − ] = ( + + + + + + + + ) −∞ ∞Σ ramp 2ramp 4 ramp 8 0 1 2 3 4 3 2 1 0 2 2 2 2 2 2 2 2 2 2 Ex= 1+ 4 + 9 +16 + 9 + 4 +1= 44 25. Find the signal power of these signals. (a) x(t) = A P T A dt A T dt A T T A x T T T T T T T = = = = →∞ − →∞ − →∞ lim ∫ lim ∫ lim 1 2 2 2 2 2 2 2 2 (b) x(t) = u(t) P T t dt T dt T T x T T T T T T = ( ) = = = →∞ − →∞ →∞ lim ∫ u lim ∫ lim 1 1 1 2 1 2 2 2 2 0 2 (c) x(t) = Acos(2 f t + ) 0 π θ P T A ft dt A T f t dt x T T T T = ( + ) = ( + ) − − ∫ ∫ 1 2 2 0 0 2 2 2 2 0 2 0 2 2 0 0 0 0 cos π θ cos π θ P A T f t dt A T t f t f x T T T T = ( + ( + )) = +  ( + )      − − ∫ 2 0 0 2 2 2 0 0 0 2 2 2 1 4 2 2 4 2 4 0 0 0 0 cos sin π θ π θ π P A T T f T f f T f A x= + +      − − +            = = 2 0 0 0 0 0 0 0 0 0 2 2 4 2 2 4 4 2 2 4 2 sin π θ sin π π θ π (d) x t A rect t n n ( ) = ( − ) =−∞ ∞Σ 2 P T A t n dt A t dt A dt A x T n T = ( − ) = ( ) = = =−∞ ∞ − − − ∫ Σ ∫ ∫ 1 2 2 2 2 0 2 2 2 2 2 1 1 2 1 2 1 2 2 0 0 rect rect (e) x t A rect t n n ( ) = − + ( − )      =−∞ ∞Σ 2 1 2 2 M. J. Roberts - 7/12/03 Solutions 2-19 P T A t n dt A t dt x T n T = − + ( − )       = − + ( ) =−∞ ∞ − − ∫ Σ ∫ 1 2 1 2 2 4 2 1 2 0 2 2 2 2 2 1 1 0 0 rect rect P A t dt A t dt x= − + ( ) = − + ( ) − 2 ∫ ∫ 1 2 4 1 2 2 2 1 1 2 2 0 1 rect rect P A dt dt A x =      + −            4 ∫ ∫ = 1 2 1 2 2 2 0 1 2 2 1 2 1 2 (f) x[n] = A P N A A N A N N A x N n N N N n N N N = = ( ) = ( )= →∞ =− − →∞ =− − →∞ lim Σ lim Σ lim 1 2 2 1 2 2 2 1 2 1 2 2 (g) x[n] = u[n] P N n N N N x N n N N N n N N = [ ] = ( )= = →∞ =− − →∞ = − →∞ lim Σ u lim Σ lim 1 2 1 2 1 2 1 2 2 1 0 1 (h) x n A rect n m m [ ] = [ − ] =−∞ ∞Σ 2 8 P N A n m A n m x n N m N n m = [ − ] = × [ − ] =−∞ ∞ =− − =−∞ ∞ =− Σ Σ Σ Σ 1 2 8 2 8 8 0 2 1 2 2 2 2 8 7 0 0 rect rect P A A A x n n n = ×  ( ) + ( ) + ( )      = × = =− − =− = Σ Σ Σ 2 8 6 2 2 6 7 2 2 2 8 1 1 1 10 2 8 5 8 (i) x n comb n N [ ]= [ ] 0 P N n N x N n N = [ ] = = Σ 1 1 0 2 0 0 0 comb (j) x[n] = ramp[n] P N n N n x N n N N N n N = [ ]= →∞ →∞ =− − →∞ = − lim Σ ramp lim Σ 1 2 1 2 2 1 2 0 1 26.Using MATLAB, plot the CT signal, x(t) = sin(2πt), over the time range, 0 < t < 10, with the following choices of the time resolution, Δt , of the plot. Explain why the plots look the way they do. (a) Δt = 1 24 (b) Δt = 1 12 (c) Δt = 1 4 (d) Δt = 1 2 (e) Δt = 2 3 (f) Δt = 5 6 M. J. Roberts - 7/12/03 Solutions 2-20 (g) Δt = 1 t 10 x(t)

Show more Read less











Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
November 13, 2021
Number of pages
682
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

, M. J. Roberts - 7/12/03




Chapter 2 - Mathematical Description of Signals
Solutions
1. If g( t) = 7e −2 t − 3 write out and simplify

(a) g( 3) = 7e −9

(b) g(2 − t) = 7e −2( 2 − t ) − 3 = 7e −7 + 2 t

 t 
t
− −11
(c) g + 4 = 7e 5
 10 

(d) g( jt) = 7e − j 2 t − 3

g( jt) + g(− jt) e − j 2t + e j 2t
(e) = 7e −3 = 7e −3 cos(2 t)
2 2
 jt − 3  − jt − 3
g  + g 
 2   2  e − jt + e jt
(f) =7 = 7 cos( t)
2 2

2. If g( x ) = x 2 − 4 x + 4 write out and simplify

(a) g( z) = z 2 − 4 z + 4

g( u + v ) = ( u + v ) − 4 ( u + v ) + 4 = u 2 + v 2 + 2 uv − 4 u − 4 v + 4
2
(b)

g(e jt ) = (e jt ) − 4 e jt + 4 = e j 2 t − 4 e jt + 4 = (e jt − 2)
2 2
(c)

g(g( t)) = g( t 2 − 4 t + 4 ) = ( t 2 − 4 t + 4 ) − 4 ( t 2 − 4 t + 4 ) + 4
2
(d)

g(g( t)) = t 4 − 8 t 3 + 20 t 2 − 16 t + 4

(e) g(2) = 4 − 8 + 4 = 0

3. What would be the numerical value of “g” in each of the following MATLAB
instructions?

(a) t = 3 ; g = sin(t) ; 0.1411

(b) x = 1:5 ; g = cos(pi*x) ; [-1,1,-1,1,-1]

(c) f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w) ;



Solutions 2-1

, M. J. Roberts - 7/12/03




0.0247 + j 0.155 
0.0920 + j 0.289 
 
 1 
 
0.0920 − j 0.289 
0.0247 − j 0.155 

4. Let two functions be defined by

1 , sin(20πt) ≥ 0 t , sin(2πt) ≥ 0
x1 ( t) =  and x 2 ( t) =  .
−1 , sin(20πt) < 0 − t , sin(2πt) < 0

Graph the product of these two functions versus time over the time range, −2 < t < 2 .
x(t)
2


t
-2 2

-2


5. For each function, g( t) , sketch g(− t) , − g( t) , g( t − 1) , and g(2t) .

(a) (b)
g(t) g(t)


4 3

-1
2
t 1
t

-3


g(-t) g(-t) -g(t) -g(t)


4 3 3

-1 1
-2
t 1
t 2
t t
-1
-3 4 -3
g(t-1) g(t-1) g(2t) g(2t)


4 3 4 3
-1
2
1 3
t 1 2
t 1
t 1
t
2
-3 -3



6. A function, G( f ) , is defined by




Solutions 2-2

, M. J. Roberts - 7/12/03


 f
G( f ) = e − j 2πf rect   .
 2

Graph the magnitude and phase of G( f − 10) + G( f + 10) over the range, −20 < f < 20 .

 f − 10   f + 10 
G( f − 10) + G( f + 10) = e − j 2π ( f −10) rect   + e ( ) rect 
− j 2π f +10

 2   2 

|G( f )|
1




f
-20 20



Phase of G( f )
π


f
-20 20




7. Sketch the derivatives of these functions.

(All sketches at end.)


π 2 t cos(πt) − π sin(πt) πt cos(πt) − sin(πt)
(a) g( t) = sinc( t) g′ ( t) = =
(πt) 2 πt 2


e − t , t ≥ 0 − t
(b) g( t) = (1 − e −t
) u(t) g′ ( t) =   = e u( t)
0 , t < 0


(a) (b)
x(t) x(t)
1 1
t t
-4 4 -1 4
-1 -1
dx/dt dx/dt
1 1
t t
-4 4 -1 4
-1 -1


8. Sketch the integral from negative infinity to time, t, of these functions which are zero for
all time before time, t = 0.



Solutions 2-3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Expert001 Chamberlain School Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
795
Member since
4 year
Number of followers
566
Documents
1190
Last sold
1 day ago
Expert001

High quality, well written Test Banks, Guides, Solution Manuals and Exams to enhance your learning potential and take your grades to new heights. Kindly leave a review and suggestions. We do take pride in our high-quality services and we are always ready to support all clients.

4.2

159 reviews

5
104
4
18
3
14
2
7
1
16

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions