100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Exam (elaborations) TEST BANK FOR Introduction to Optics 3rd Edition By Frank L Pedrotti, Leno M Pedrotti, Leno S Pedrotti

Rating
-
Sold
1
Pages
166
Grade
A+
Uploaded on
13-11-2021
Written in
2021/2022

Exam (elaborations) TEST BANK FOR Introduction to Optics 3rd Edition By Frank L Pedrotti, Leno M Pedrotti, Leno S Pedrotti












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
November 13, 2021
Number of pages
166
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

, C hapter 1 Nature of Light



h h 6. 63 × 1 0 − 3 4 J · s
1 -1 . a) λ = = = = 6. 63 × 1 0 − 3 4 m
p m v ( 0. 05 kg) ( 20 m/ s)
h h 6. 63 × 1 0 − 3 4 J · s
b) λ = =√ = = 3. 88 × 1 0 − 1 0 m
p 2 m E [ ( 2 · 9. 1 1 × 1 0 − 3 1 kg) ( 1 0 · 1 . 602 × 1 0 − 1 9 J) ]



 
Energy n h ν n h c 1 00 6. 63 × 1 0 − 3 4 J · s 3 × 1 0 8 m/s
1 -2 . P = = = = = 3. 62 × 1 0 − 1 7 W
time t tλ ( 1 s) ( 550 × 1 0 − 9 m)



1 -3. The energy of a photon is given by E = h ν = h c/ λ
 
6. 63 × 1 0 − 3 4 J · s 3 × 1 0 8 m/s  1 eV
At λ = 380 nm: E = = 5. 23 × 1 0 − 1 9 J = 3. 27 eV
380 × 1 0− 9 m  1 . 60 × 1 0− 1 9J
− 34
6. 63 × 1 0 J · s 3 × 1 0 m/s
8  1 eV
At λ = 770 nm: E = = 2. 58 × 1 0 − 1 9 J = 1 . 61 eV
770 × 1 0 m − 9 1 . 60 × 1 0 − 1 9 J



h hc hc h
1 -4. p = E/ c = m c 2 / c = m c = 2. 73 × 1 0 − 2 2 kg · m/s, λ= = = = = 2. 43 × 1 0 − 1 2 m
p E m c2 m c


 2  1 MeV
1 -5. Ev = 0 = m c 2 = 9. 1 09 × 1 0 − 3 1 kg 2. 998 × 1 0 8 m/ s = 8. 1 87 × 1 0 − 1 4 J = . 51 1 MeV
1 . 602 × 1 0 − 1 9 J


√ √
1 -6. c p = E 2 − m 2 c 4 , where E = EK + m c 2 = ( 1 + 0. 51 1 ) ) MeV. So c p = 1 . 51 1 2 − 0. 51 1 2 MeV
That is, c p = 1 . 422 MeV and p = 1 . 422 MeV/ c.


   
hc 6. 626 × 1 0 − 3 4 J · s 2. 998 × 1 0 8 m/ s 1 eV 1 Å 1 2, 400 
1 -7. λ = = = Å · eV
E E 1 . 602 × 1 0 − 1 9 J 1 0− 1 0 m E


!
1 h  − 1 /2 i    1
1 -8. EK = m c 2 p −1 = m c2 1 − v 2 / c2 − 1 ' m c 2 1 − ( − ) v 2 / c 2 − 1 = m v 2
1 − v 2 / c2 2




1

, 1 -9. The total energy of the proton is,
 −19

9 1 . 60 × 1 0 J  2
E = EK + m p c = 2 × 1 0
2
+ 1 . 67 × 1 0 − 2 7 kg 3. 00 × 1 0 8 m/s = 4. 71 × 1 0 − 1 0 J
1 eV
q h 2 2  2 i − 1 /2
E 2 − m 2p c 4 4. 71 × 1 0 − 1 0 J − 1 . 67 × 1 0 − 2 7 kg 3. 00 × 1 0 8 m
a) p = =
c 3. 00 × 1 0 8 m/ s
p = 1 . 49 × 1 0 − 1 8 kg · m/ s
 
b) λ = h/ p = 6. 63 × 1 0 − 3 4 J · s / 1 . 49 × 1 0 − 1 8 kg · m/ s = 4. 45 × 1 0 − 1 6 m
  
c) λ p h ot on = h c/ E = 6. 63 × 1 0 − 3 4 J · s 3. 00 × 1 0 8 m/s / 4. 71 × 1 0 − 1 0 = 4. 22 × 1 0 − 1 6 m


 
Energy Energy 1 000 W/m 2 1 0 − 4 m 2
1 -1 0. n ph ot on s = = = = 2. 77 × 1 0 1 7
hν h c/ λ ( 6. 63 × 1 0 − 3 4 J) ( 3. 00 × 1 0 8 m/ s) / ( 550 × 1 0 − 9 m)


n 1 E e / h ν 1 Ee λ 1 / h c λ 1
1 -1 1 . = = =
n 2 E e / h ν 2 Ee λ 2 / h c λ 2


1 -1 2 . The wavelength range is 380 nm to 770 nm. The corresponding frequencies are

c 3. 00 × 1 0 8 m/ s c 3. 00 × 1 0 8 m/s
ν7 7 0 = = = 3. 89 × 1 0 1 4 Hz ν3 8 0 = = = 7. 89 × 1 0 1 4 Hz
λ 770 × 1 0 m
− 9 λ 380 × 1 0 − 9 m

 
1 -1 3. The wavelength of the radio waves is λ = c/ ν = 3. 00 × 1 0 8 m/s / 1 00 × 1 0 6 Hz = 3 m. The length of the
half wave antenna is then λ/ 2 = 1 . 5 m.
 
1 -1 4. The wavelength is λ = c/ ν = 3. 0 × 1 0 8 m/ s / 90 × 1 0 6 Hz = 3. 33 m. The length of each of the rods is then
λ/ 4 = 0. 83 m.
 
1 -1 5. a) t = D l / c = ( 90 × 1 0 . 0 × 1 0 8 s = 3. 0 × 1 0 − 4 s. b) D s = v s t = ( 340 ) 3. 0 × 1 0 − 4 m = 0. 1 0 m

Φe 500 W Φ 500 W
1 -1 6. a) Ie = = = 39. 8 W/ sr b) Me = e = = 1 0 6 W/ m 2
∆ω 4 π sr A 5 × 1 0 − 4 m2
Φ Φe 500 W 
c) Ee = e = 2
= 2 = 9. 95 W/m 2 e) Φ e = Ee A = 9. 95 W/ m 2 π ( 0. 025 m) 2 = . 01 95 W
A 4πr 4 π( 2 m)

1 -1 7. a) The half angle divergence θ can be found from the relation

r sp ot 0. 0025 m
tan( θ ) ≈ θ = = = 1 . 67 × 1 0 − 4 rad = . 0096 ◦
L ro om 15 m

2
A sp ot π r2 π ( 0. 0025 m)
b) The solid angle is ∆ ω = 2 = 2 s p ot = 2 = 8. 73 × 1 0 − 8 sr.
L ro om L ro om ( 1 5 m)
Φe Φe 0. 001 5 W
c) The irradiance on the wall is Ee = = 2 = = 76. 4 W/m 2 .
A s p ot π r sp ot π ( 0. 0025 m) 2
d) The radiance is ( approximating differentials as increments)

Φe 0. 001 5 W W
Le ≈ =  = 8. 75 × 1 0 1 0 2
∆ω ∆A laser cosθ ( 8. 73 × 1 0 sr) π ( 0. 00025 m) cos( 0)
− 8 2 m · sr



2

, C hapter 2 G eometrical O ptics

P P
d op ni xi
2 -1 . t = = i
c c
2 -2 . Referring to Figure 2 1 2 and with lengths in cm,
 1 /2   1/2
n0 x2 + y2 + n i y 2 + s o + s i − x) 2 = no s o + ni s i
 1 /2  
2 1 /2
( 1 ) x2 + y2 + 1 . 5 y 2 + ( 30 − x) = 20 + 1 . 5 ( 1 0) = 35
    1 /2  2
2. 25 y 2 + ( 30 − x) 2 = 35 − x 2 + y 2
  1 /2
1 . 25 x 2 + y 2 + 70 x 2 + y 2 − 1 35 x + 800 = 0

Using a calculator to guess and check or using a computer algebra system, ( like the free program Maxima,
for example) one can numerically solve this equation for x for given y values. Doing so results in,
x ( cm) 20 20. 2 2 0. 4 20. 8 21 . 6 22. 4 2 3. 2 2 4. 0 24. 8 2 5. 6 2 6. 4 2 7. 2
y ( cm) 0 ± 1 . 0 ± 1 . 40 ± 1 . 96 ± 2. 69 ± 3. 2 0 ± 3. 58 ± 3. 85 ± 4. 04 ± 4. 1 4 ± 4. 1 8 ± 4. 1 3


2 -3. Refer to the figure for the relevant parameters.


d = d 0 = 30 2 + 2. 5 2 = 30. 1 04 cm d
t
d0
Fermat: d + d 0 = s + s 0 − t + m t
d + d0 = s + s 0 + t ( m − 1 )
2 ( 30. 1 0399) = 60 = t ( 1 . 52 − 1 )
t = 4 mm
s 0 = 3 0 cm s 0 = 30 cm
n = 1 . 52


2 -4. See the figure below. Let the height of the person be h = h 1 + h 2 .

h1 The person must be able to see the top of
2
h1
his head and the bottom of his feet. From
the figure it is evident that the mirror
height is:

mirror h m irror = h − h − h = h/ 2
h2

h2 The mirror must be half the height of the
2 person. So for a person of height six ft
person, the mirror must be 3 ft high.


2 -5. Refer to the figure.

45 ◦
Top

At Top: ( 1 ) sin 45 = 2 sin θ 0 ⇒ θ 0 = 30
30 ◦ √ √
At Side: 2 sin 60 ◦ = ( 1 ) sin θ 0 , sin θ 0 = 1 . 5 > 1
Side Thus total internal reflection occurs.
60◦
At Bottom: reverse of Top: θ 0 = 45 ◦

45◦
Bottom




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Expert001 Chamberlain School Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
798
Member since
4 year
Number of followers
566
Documents
1190
Last sold
1 week ago
Expert001

High quality, well written Test Banks, Guides, Solution Manuals and Exams to enhance your learning potential and take your grades to new heights. Kindly leave a review and suggestions. We do take pride in our high-quality services and we are always ready to support all clients.

4.2

159 reviews

5
104
4
18
3
14
2
7
1
16

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions