1.1
(a) One dimensional, multichannel, discrete time, and digital.
(b) Multi dimensional, single channel, continuous-time, analog.
(c) One dimensional, single channel, continuous-time, analog.
(d) One dimensional, single channel, continuous-time, analog.
(e) One dimensional, multichannel, discrete-time, digital.
1.2
(a) f = 0.01π 1
2π = 200 ⇒ periodic with Np = 200.
(b) f = 105 ( 2π ) = 17 ⇒ periodic with Np = 7.
30π 1
3π
(c) f = 2π = 32 ⇒ periodic with Np = 2.
3
(d) f = 2π ⇒ non-periodic.
(e) f = 62π 1 31
10 ( 2π ) = 10 ⇒ periodic with Np = 10.
1.3
(a) Periodic with period Tp = 2π 5 .
5
(b) f = 2π ⇒ non-periodic.
1
(c) f = 12π ⇒ non-periodic.
n
(d) cos( 8 ) is non-periodic; cos( πn 8 ) is periodic; Their product is non-periodic.
(e) cos( πn
2 ) is periodic with period Np =4
sin( πn
8 ) is periodic with period N p =16
cos( πn
4 + π
3 ) is periodic with period Np =8
Therefore, x(n) is periodic with period Np =16. (16 is the least common multiple of 4,8,16).
1.4
2πk k
(a) w = N implies that f = N. Let
α = GCD of (k, N ), i.e.,
k = k ′ α, N = N ′ α.
Then,
k′
f= , which implies that
N′
N
N′ = .
α
3
,(b)
N = 7
k = 01234567
GCD(k, N ) = 71111117
Np = 17777771
(c)
N = 16
k = 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 16
GCD(k, N ) = 16 1 2 1 4 1 2 1 8 1 2 1 4 . . . 16
Np = 1 6 8 16 4 16 8 16 2 16 8 16 4 . . . 1
1.5
(a) Refer to fig 1.5-1
(b)
3
2
1
−−−> xa(t)
0
−1
−2
−3
0 5 10 15 20 25 30
−−−> t (ms)
Figure 1.5-1:
x(n) = xa (nT )
= xa (n/Fs )
= 3sin(πn/3) ⇒
1 π
f = ( )
2π 3
1
= , Np = 6
6
4
, 3
t (ms)
0 10 20
-3
Figure 1.5-2:
(c)Refer nto fig 1.5-2 o
x(n) = 0, √32 , √32 , 0, − √32 , − √32 , Np = 6.
(d) Yes.
100π
x(1) = 3 = 3sin( ) ⇒ Fs = 200 samples/sec.
Fs
1.6
(a)
x(n) = Acos(2πF0 n/Fs + θ)
= Acos(2π(T /Tp )n + θ)
But T /Tp = f ⇒ x(n) is periodic if f is rational.
(b) If x(n) is periodic, then f=k/N where N is the period. Then,
k Tp
Td = ( T ) = k( )T = kTp .
f T
Thus, it takes k periods (kTp ) of the analog signal to make 1 period (Td ) of the discrete signal.
(c) Td = kTp ⇒ N T = kTp ⇒ f = k/N = T /Tp ⇒ f is rational ⇒ x(n) is periodic.
1.7
(a) Fmax = 10kHz ⇒ Fs ≥ 2Fmax = 20kHz.
(b) For Fs = 8kHz, Ffold = Fs /2 = 4kHz ⇒ 5kHz will alias to 3kHz.
(c) F=9kHz will alias to 1kHz.
1.8
(a) Fmax = 100kHz, Fs ≥ 2Fmax = 200Hz.
(b) Ffold = F2s = 125Hz.
5