100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Course 9 Plant Biology term I

Rating
-
Sold
2
Pages
130
Uploaded on
01-11-2021
Written in
2021/2022

Summary of all lectures of Course 9 Plant Biology term I with all accompanying chapters of Smith's Plant Biology book

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 1, 4 t/m 9
Uploaded on
November 1, 2021
Number of pages
130
Written in
2021/2022
Type
Summary

Subjects

Content preview

Plant biology course 9 term I
Week 1 Plant origins
Main stages of plant revolution
- 1st indication of life: first cells
- From prokaryotic to eukaryotic cells
- Evolution of eukaryotes (plants)
- Reproduction cycles
- Colonization of the land
- The first forests
- Emergence of seed plants
- Flowering plants
- Evolution of grasses

After big bang the earth needed to cool down
No ozone layer!
3,5 billion years ago first photosynthesis → cyanobacteria in Archean era

Origin of life – Archean era (3,5 BYA)
- Stromatolites: form of coral made by bacteria who form a layer of sediment
- Primitive form of photosynthesis = prokaryotes, cyanobacteria
o First production of oxygen

Prokaryotic cells
- No organelles
- Single cell
- Protection against radiation
• Living in water
• Layer to protect: mucilaginous sheath
• Biochemical DNA repair system
- Asexual reproduction
• No DNA shuffling



From prokaryotic to eukaryotic cells
- 1st endosymbiotic event:
• Host cell nature not known (maybe Archaea)
• Alpha-proteobacterium engulfed by host cell → origin of mitochondria
▪ Mitochondria today still have prokaryotic genome, nucleus genome eukaryotic
▪ Formation of heterotrophic eukaryotic cells
- 2nd endosymbiotic event:
• Some groups engulfed cyanobacterium → origin of plastids
▪ Formation of autotrophic eukaryotic cells




1

,Photosynthetic eukaryotic organisms
- 3 clades of protist
• Glaucophytes
• Red algae
▪ Rhodophyte = dried red algae, used for
sushi for example
• Green algae → origin of land plants
- Produces oxygen




Meiosis: shuffling of DNA
Mitosis: no shuffling of DNA




2

,570 million years ago Cambrian explosion
- Drastic changes, rising oxygen levels and formation ozone layer
• UV radiation absorbed
• Evolution rate accelerated
- Plants moving to land! (still needed another 100 million years to get there)

First life on land
- Bryophytes: mosses and liverworts
- Lichen
• Symbiosis between algae, cyanobacteria and fungi (and yeast)

Colonization on the land
- New features necessary against desiccation (uitdroging)
• Cuticle → wax layer on top of epidermis leaves
• Stomata
• Sporopollenin (protection of spores)
• Rhizoids
▪ Primitive roots
- Non-vascular plants
• Bryophytes → embryophytes class
▪ Gametophytes (gamete producing) are larger than the sporophytes (spore
producing)
▪ Mosses
▪ Liverworts
• Large gametophyte (the green you see of the moss)
• Haploid
• Hydroids (primitive vascular cells)

Female and male gametophytes → needs water to start fertilization (not fully adapted to living on land)




3

, Transition
- It went so well, no space left on the ground → plants needed to go up → trees and first forest
- Less CO2 = bigger leaves and more stomata to catch as much as possible

First forest
- New features needed → tracheophytes (tube/vascular plants)
• Xylem and phloem
• Roots
• Secondary growth (thickness)
▪ Lignin → many fossils as
lignin is not decayable
▪ Cambium
- Emergence of vascular plants as large as
trees nowadays
- Megaphylls: Telome theory
• The theory that the leaves
(megaphylls) of ferns and seed
plants evolved by the modification
of terminal branches (telomes) of
stems.
• Through evolution branches got
sterile (lost their spores) → flattened
→ connection between branches
with lamina (leaf tissue)
- Correlation leaf size to CO2 level = negative
• Less CO2 means larger leaves
- Still seedless, produces pollen

Difference micro- and megaphylls:
Size of leaves → micro small and mega large
Microphylls have 1 unbranched vein, whereas megaphylls have multiple veins

Ferns
- Sporophytes are the green leaves
- Fertilization needs water
- Plants are haploid




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kimjon Hogeschool Arnhem en Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
28
Member since
10 year
Number of followers
15
Documents
11
Last sold
1 year ago

3.0

4 reviews

5
1
4
0
3
2
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions