100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Book Evolutionary Computing by Eiben & Smith

Rating
-
Sold
6
Pages
27
Uploaded on
18-10-2021
Written in
2021/2022

This document contains a summary of chapters 1-10,12,13, and 17. It helps you to get a feeling for the important subjects that are covered in the book. If you study this, together with your own notes and the slides of the professor, you are well prepared. Good luck!

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
1 t/m 10, 12, 13, 17
Uploaded on
October 18, 2021
Number of pages
27
Written in
2021/2022
Type
Summary

Subjects

Content preview

Summary Evolutionary Computing – Berend Markhorst




Table of content

Chapter 1 – Problems to be solved .................................................................................................................. 3

Chapter 2 – Evolutionary Computing: The Origins ........................................................................................... 4

Chapter 3 – What is an evolutionary algorithm? ............................................................................................. 5

Chapter 4 – Representation, mutation, and recombination ............................................................................. 8
Binary representation ......................................................................................................................................... 8
Integer representation ........................................................................................................................................ 9
Real-valued representation ................................................................................................................................ 9
Tree representation .......................................................................................................................................... 11

Chapter 5 – Fitness, Selection and Population Management ......................................................................... 11

Chapter 6 – Popular Evolutionary Algorithm Variants ................................................................................... 13
Genetic Algorithms ........................................................................................................................................... 13
Evolution Strategies .......................................................................................................................................... 14
Evolutionary Programming ............................................................................................................................... 14
Genetic Programming....................................................................................................................................... 14
Learning Classifier Systems ............................................................................................................................... 15
Differential evolution ........................................................................................................................................ 15
Particle Swarm Optimisation ............................................................................................................................ 16
Estimation of Distribution Algorithms .............................................................................................................. 16

Chapter 7 – Parameters and Parameter Tuning ............................................................................................. 16

Chapter 8 – Parameter Control ..................................................................................................................... 18
Changing parameters ....................................................................................................................................... 18
Changing the penalty coefficients .................................................................................................................... 18
Classification of control techniques .................................................................................................................. 19

Chapter 9 – Working with Evolutionary Algorithms ....................................................................................... 20
Performance measures ..................................................................................................................................... 20

Chapter 10 – Hybridization with Other Techniques: Memetic Algorithms...................................................... 22
Local search ...................................................................................................................................................... 22
MA’s structure .................................................................................................................................................. 23
Adaptive MAs ................................................................................................................................................... 24
Design issues for MAs ....................................................................................................................................... 24

Chapter 12 – Multiobjective Evolutionary Algorithms ................................................................................... 24
EA Approaches to MOPs ................................................................................................................................... 25



1

,Summary Evolutionary Computing – Berend Markhorst

Chapter 13 – Constraint Handling ................................................................................................................. 25
Approaches to handling constraints ................................................................................................................. 25

Chapter 17 – Evolutionary robotics ............................................................................................................... 26




2

, Summary Evolutionary Computing – Berend Markhorst


Chapter 1 – Problems to be solved
The field of evolutionary computing is primarily concerned with problem solvers.
The classification of problems in this section is based on a black box model of computer
systems. When input is provided, the system processes that input through some
computational model, whose details are not specified in general. In essence there are three
components: input, model and output.
Optimization, e.g. travelling salesman problem. For a given instance of this problem, we
have a formula (the model) that for each given
sequence of cities (the inputs) will compute the
length of the tour (the output).
Modelling, e.g. voice control system for smart
homes. The set of all phrases pronounced by the
user (inputs) must be correctly mapped onto the
set of all control commands in the repertoire of
the smart home. It is important to note that
modelling problems can be transformed into
optimization problems.
Simulation, e.g. performing what-if analyses.
An assumption behind the black box view is that a computational model is directional: it
computes from the inputs towards the outputs and it cannot be simply inverted. This implies
that solving a simulation problem is different from solving an optimization or a modelling
problem.
The process of problem solving can be viewed as a search through a potentially huge set of
possibilities to find the desired solution. Search space: collection of all objects of interest
including the solution we are seeking.
Problems à define search spaces. Problem
solvers à methods that tell us how to move
through search spaces.
Objective function à way of assigning a value
to a possible solution that reflects its quality
on a scale. Constraint à represents a binary
evaluation telling us whether a given
requirement holds or not.
The nature of a problem is less obvious than it
may seem; you can model something as a FOP, CSP or COP.
There are two kinds of optimization problems: numerical and combinatorial. Then there’s
problem size (which is grounded in the dimensionality of the problem at hand) and running-
time (usually the worst-case scenario). Problem reduction: we can transform one problem
into another via a suitable mapping.
Class P: there exists an algorithm that
can solve it in polynomial time. Class NP:
it can be solved by some algorithm and
any solution can be verified within
polynomial time. Note that P is a subset
of NP. Class NP-complete: if it belongs to
the class NP and any other problem in NP
can be reduced to this problem by an


3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
berendmarkhorst St Ignatiusgymnasium (Amsterdam)
Follow You need to be logged in order to follow users or courses
Sold
93
Member since
9 year
Number of followers
85
Documents
28
Last sold
2 months ago

Hoi! Ik ben Berend, ik kom uit Amsterdam en ik ben in 2016 (cum laude) afgestudeerd aan het IG (St. Ignatiusgymnasium). Hier heb ik hard voor gewerkt en daar de nodige samenvattingen bij gemaakt. Door middel van deze site kun jij daar nu ook gebruik van maken (en kan ik er m'n lunch tijdens m'n studie mee bekostigen). Groetjes, Berend

3.3

6 reviews

5
1
4
2
3
2
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions