100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Summary Graad 12 Wiskunde Notaboek [Boek 1 : Algebra]

Rating
-
Sold
-
Pages
116
Uploaded on
23-09-2021
Written in
2021/2022

Volledige samevatting van die konteks van Algebra Graad 11 Wiskunde op hoërvlak (skoon wiskunde). Hierdie dokument voldoen aan die vereistes soos uiteengesit in die SAGS deur IEB en DBE. Behels die hele jaar se werk rakende Algebra , is goeie voorbereiding vir VRAESTEL 1.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course
Schooljaar
200

Document information

Uploaded on
September 23, 2021
File latest updated on
December 4, 2021
Number of pages
116
Written in
2021/2022
Type
Summary

Subjects

Content preview

wiskunde

, Grondbeginsels
Getalle “familie”/-stelsel

Natuurlike getalle ,
telgetalle en heelgetalle



Reële en nie-reële Tipes Breuke
getalle getalle


rasionale en
irrasionale getalle

Natuurlike getalle: N = {1; 2; 3; …}
Ewe getalle : : 2;4;6;8….
Onewe getalle : 1;3;5;7…
Priemgetalle : 2;3;5;7;11;13… (1 is nie n priemgetal nie)
Saamgestelde getalle: 4;6;8;9;10;12 (getalle met meer as 2 faktore)
Vierkants getalle ; 1;4;9;16;25…
Derdemagsgetalle : 1;8;27;64;125…


Telgetalle: Nₒ = {0; 1; 2; 3; …}
Heelgetalle: Z = {…; -2; -1; 0; 1; 2;

,Breuke:

Breuke

Desimale breuke (bv. Gewone breuke (bv. ½;
1.4 ; -0.25 ; 0.6) ¾; ¼)




Egte breuke (breuke Egte breuke (breuke
wat lê tussen -1 en 1 wat lê tussen -1 en 1
d.w.s teller < noemer) d.w.s teller < noemer)




Onegte breuke Onegte breuke
(waardes minder as (waardes minder as
-1 of groter as 1) -1 of groter as 1)



Rasionale en irrasionale getalle:
RASIONALE GETALLE – enige getal wat as ‘n breuk geskryf kan
word d.w.s ‘n of waar A & B ∈ Z ; B ≠ 0
ℎ𝑒𝑒𝑙𝑔𝑒𝑡𝑎𝑙 𝐴
ℎ𝑒𝑒𝑙𝑔𝑒𝑡𝑎𝑙 𝐵
Alle heelgetalle
Alle breuke
Alle eindigende desimale breuke
Alle repeterende desimale breuke

IRRASIONALE GETALLE- Kan slegs in ‘n getalvorm met
oneindigende, nie-repeterende syfers na die desimale komma
geskryf word, die getalle kan NIE AS ‘N BREUK geskryf word NIE
• Alle nie-eindigende , nie-repeterende desimale getalle
• Pi (π)
• √𝑃𝑜𝑠𝑖𝑡𝑖𝑒𝑤𝑒 𝑛𝑖𝑒 − 𝑣𝑖𝑒𝑟𝑘𝑎𝑛𝑡
3
• √𝑃𝑜𝑠𝑖𝑡𝑖𝑒𝑤𝑒 𝑛𝑖𝑒 − 𝑘𝑢𝑏𝑖𝑒𝑘𝑒

, Reële en nie-reële getalle:
REËLE GETALLE – Die getalle lyn bestaan uit al die Rasionale (Q) en
Irrasionale (Q’) getalle wat saam die versameling Reële (ℝ) getalle
vorm
NIE-REËLE GETALLE - √−25 is ‘n voorbeeld van ‘n nie-reële getal.
Daar is geen getal wat, as dit gekwadreer word, gelyk sal wees
aan -25 nie. √−25 bestaan nie op die getalle lyn nie. Die reële en nie-
reële getalle vorm gesamentlik die komplekse getalle.



Bodmas / HVDVOA

B Brackets () H Hakkies ()



0 Of / Orders √x x²
V Van



D Division ÷
D Deling ÷



M Multiplication x V Vermenigvuldiging x



A Addition + O Optel +



S Subtraction -
A Aftrek -

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
NotedSummaries STADIO
Follow You need to be logged in order to follow users or courses
Sold
1500
Member since
4 year
Number of followers
780
Documents
208
Last sold
4 days ago
Noted Summaries

4.5

231 reviews

5
161
4
44
3
19
2
1
1
6

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions