100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Lecture Notes for BIOL121: Impact of Microbes

Rating
5.0
(1)
Sold
1
Pages
34
Uploaded on
17-09-2021
Written in
2020/2021

Lecture 1: Microbiology Lecture 2: Introduction & Overview of Prokaryotes and their Cell Structure Lecture 3: Bacterial Nutrition & Growth Lecture 4: Bacterial Pathogenicity Lecture 5: Protists 1 Lecture 6: Protists 2 Lecture 7: Protists & Prokaryotes Lecture 8: Intro to Fungi Lecture 9: Fungi as Pathogens Lecture 10: Putting Fungi to Good Use Lecture 11: Viruses Lecture 12: Classification of Viruses & Animal Viruses

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 17, 2021
Number of pages
34
Written in
2020/2021
Type
Class notes
Professor(s)
-
Contains
All classes

Subjects

Content preview

Lecture 1: Microbiology

Microbiology
- study of organisms too small to be studied by naked eye e.g. microbes
 viruses: non-cellular
 prokaryotes: bacteria, archaea
 eukaryotes: protists, algae, fungi
- most microorganisms carry out life processes independent of other cells
- two main themes:
 basic science of life
 impact on humans directly or indirectly

Living Conditions microbial community
- can exist in microbial communities
- live in many conditions e.g. volcanoes, hot springs, ice
- bacteria interact with each other & other organisms in either competition or cooperation
- able to alter their environment
- make up most of earth’s biomass
 total number of microbial cells is ~5x1030

Disease
- infectious diseases caused by pathogens
 cause of death in many underdeveloped countries e.g. malaria, TB
 in 20th century ~1680m people died of infectious diseases
- controlled by combination of vaccines, antibiotics & hygiene
- new diseases always emerging

Benefits of Microbes
- some food materials require microbiological activity e.g. yoghurt, cheese & beer
- required for agriculture:
 nutrient cycling: microbes convert nutrients into forms that are accessible to plants
 animal husbandry: microbes in stomach of cattle & sheep degrade cellulose in grass to make it
easier to digest
 N2 fixation: bacteria use atmospheric N to synthesise NH3 reducing cost and pollution of fertiliser
- required for energy & environment:
 methanogenic bacteria produce natural gas
 convert waste products & surplus grain to biofuels e.g. ethanol
 bioremediation: clean up degrading pollutants e.g. spilled oil
- required for industrial microbiology & biotechnology:
 genetically modified microorganisms synthesise high commercial value products e.g. insulin
 artemisinin (drug for malaria) can be cheaply produced using yeast

Problems with Microbes
- grow in food so preservation is required:
 spoil food
 cause food-borne disease

History of Microorganisms
- 1665: Robert Hooke developed first microscope and discovered fungus growing on leather
- 1676: Antoni van Leeuwenhoek first described bacteria

,- mid 1800s: germ vs miasma theory
 people believed disease was caused by bad air so tried to eradicate it by getting rid of bad smells
 Dr. William Farr believed cholera was transmitted by air and thought conc. of ‘miasmata’ was
worse near the Thames and lower in the surrounding hills
- mid to late 19th century: improvement of microscopes meant a good medieval PPE
development of microbiology was seen
 spontaneous generation: theory that living creatures could arise from non-living matter and that
the process was normal
 1822-1895: Marie & Louis Pasteur disproved spontaneous generation theory by conducting 2
experiments Experiment 1:
- put nutrient broth in flask
- sterilised flask and left swan neck attached

Experiment 2:
- put nutrient broth in flask
- sterilised flask and removed swan neck

- in exp. 1, no microbes grew as they couldn’t travel against
gravity in swan neck to the broth
- in exp. 2, microbes grew as they were able to enter the
broth
- if spontaneous generation was real, microbes would’ve
grown in exp. 1
- Pasteurs’ work led to methods to stop microbe growth e.g.:
 sterilisation: killing all microorganisms including dormant forms
 pasteurisation: destruction of bacteria able to reproduce by brief heating
- Pasteurs’ also developed vaccines against anthrax & rabies
- 1884: Hank Christian Gram developed gram staining method
 gram staining method: method for distinguishing 2 major classes of bacteria based on cell wall
composition
- Robert Koch developed germ theory & simple methods for obtaining bacteria in pure samples
 Fanny Hesse said to use agar instead of the potato & gelatine that Koch was using
 Koch’s Postulates: criteria for proving that specific microorganisms cause diseases
1) causative microbe must be found in every case of disease and be absent from healthy host
2) microbe isolated & grown outside host
3) microbe introduced to healthy host & host must get disease
4) microbe is re-isolated from host
 Koch’s Postulates led to discovery of causes for anthrax, TB & cholera

, Lecture 2: Introduction & Overview of Prokaryotes and their Cell Structure


Three Domains
1) Eurkarya
 multicellular organisms, plants, fungi & animals
2) Archaea
 single celled organisms living in extreme environments
3) Bacteria
- phylogeny relating to three domains of life is sorted based on sequence analysis of ribosomal RNA,
genes & other stuff

Properties of Cells
- compartmentalisation
 cell is open system and substances move in & out
- growth
- evolution
- some:
 are mobile
 are differentiated
 can communicate

Typical Microbial Cell Sizes
- viruses: 0.01-0.2 μm
- bacteria: 0.2- 5 μm
- eukaryotes: 5-100 μm
- yeast: 5-10 μm
- algae: 10-100 μm
- protists: 50 -1000 μm

Importance of Cell Volume
- higher SA:V leads to faster rate of nutrient exchange
- smaller cells = faster growth
 however, faster growth leads to higher mutation rates

Eukaryotic Cell Structure

Nucleus Cytoplasmic membrane
 membrane enclosed  separates cytoplasm from outside
 contains DNA

Endoplasmic Reticulum Cell Wall
 protein glycosylation  only plants & fungi
 membrane factory  gives structural strength
 lipid synthesis

Mitochondrion Ribosomes
 respiration  protein synthesis


Golgi Apparatus
 modifies, processes & packages Chloroplast
products of the ER  only plants & algae
 produces chlorophyll for
photosynthesis

, Bacteria Cell Structure


Capsule/ Slime Layer
Nucleoid Ribosome Inclusions  polysaccharide




Flagellum
Cytoplasmic Membrane Cell Wall
S-layer
 layer of protein
 function not fully
understood

Membrane Structure in Bacteria




Functions
- barrier: separated cell from environment
- selectively permeable barrier: controls movement of molecules in & out of cells
 prevents leakage & acts as gateway
- protein anchor: site of many proteins participating in transport, bioenergetics & chemotaxis
 chemotaxis: movement of organism in response to chemical stimulus
- site of respiration & photosynthesis
- energy conservation: site of generation & proton motive force
 proton motive force: occurs when cell membrane is energised due to electron transport reaction
causing cell to produce energy that can be used straight away (e.g. to move flagella) or to be stored
as ATP

Active Transport
- movement of particle from low concentrations to high concentrations
 allows dilute nutrients taken up efficiently
- uptake rate shows saturation at low external concentrations
$5.50
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
amal1warsame
5.0
(1)

Also available in package deal

Reviews from verified buyers

Showing all reviews
4 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
amal1warsame Lancaster University
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
4 year
Number of followers
2
Documents
7
Last sold
4 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions