100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Sumario Cálculo en varias variables.

Rating
-
Sold
-
Pages
6
Uploaded on
14-09-2021
Written in
2020/2021

- Dominios y curvas de nivel. - Cálculo de límites. - Derivadas parciales. Plano tangente. - Función diferenciable en dos variables. - Derivada direccional. Gradiente. - Teorema de Schwartz. - Regla de la cadena. - Formula de Taylor. - Lagrangiano

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 14, 2021
Number of pages
6
Written in
2020/2021
Type
Summary

Subjects

Content preview

Tema 2. Cálculo en varias variables.
Dominios y curvas de nivel.
2 2
Dada una función 𝑓: 𝑅 → 𝑅 se define el dominio de la función como 𝑓 = {(𝑥, 𝑦) ∈ 𝑅 | 𝑓(𝑥, 𝑦) 𝑒𝑥𝑖𝑠𝑡𝑒}
Ejemplos:
𝑥𝑦 2
𝑓(𝑥, 𝑦) = 2 2 ; 𝐷𝑜𝑚𝑓 = 𝑅 − {(0, 0)}
𝑥 +𝑦
2 2
2 2 2
𝑓(𝑥, 𝑦) =
𝑥 +𝑦 −9
𝑥 {
; 𝐷𝑜𝑚𝑓 = (𝑥, 𝑦) ∈ 𝑅 |𝑥 + 𝑦 − 9 ≥ 0 ∧ 𝑥 ≠ 0 }
2 2 2 2 2
con la igualdad: 𝑥 + 𝑦 − 9 = 0; 𝑥 + 𝑦 = 3
2
𝑓(𝑥, 𝑦) = 𝑎𝑟𝑐𝑠𝑒𝑛(𝑥 + 𝑦); 𝐷𝑜𝑚𝑓 = (𝑥, 𝑦) ∈ 𝑅 | − 1 ≤ 𝑥 + 𝑦 ≤ 1 { }
−1≤𝑥+𝑦 ∧ 𝑥+𝑦≤1
𝑦 =− 𝑥 − 1 ∧ 𝑦=1−𝑥

2
Dada 𝑓: 𝑅 → 𝑅 tal que a cada valor de x se le hace corresponder el valor de
𝑓(𝑥, 𝑦), se llama curva de nivel k, a la curva 𝑓(𝑥, 𝑦) = 𝑘.

Ejemplos:
2 2
𝑓(𝑥, 𝑦) = 25 − 𝑥 − 𝑦
2 2 2 2 2
NIVEL 0: 25 − 𝑥 − 𝑦 = 0; 𝑥 + 𝑦 = 5
2 2 2 2 2
NIVEL 9: 25 − 𝑥 − 𝑦 = 9; 𝑥 + 𝑦 = 4
2 2 2 2 2
NIVEL 16: 25 − 𝑥 − 𝑦 = 16; 𝑥 + 𝑦 = 3
2 2 2 2 2
NIVEL 21: 25 − 𝑥 − 𝑦 = 21; 𝑥 + 𝑦 = 2
2 2 2 2 2
NIVEL 24: 25 − 𝑥 − 𝑦 = 24; 𝑥 + 𝑦 = 1
2 2 2 2 2
NIVEL 25: 25 − 𝑥 − 𝑦 = 25; 𝑥 + 𝑦 = 0

𝑓(𝑥, 𝑦) = |𝑥𝑦|
NIVEL 0: |𝑥𝑦| = 0
NIVEL 1: |𝑥𝑦| = 1
NIVEL 4: |𝑥𝑦| = 4

Cálculo de límites.
Se dice que lim 𝑓(𝑥) = 𝑙 si ∀ε > 0, ∃δ > 0, tal que si 𝑥|0 < |𝑥 − 𝑎| < δ entonces
𝑥→𝑎
|𝑓(𝑥) − 𝑙| < ε.

Ejemplo:
1 2
lim 2 𝑥 + 1 = 3
𝑥→2
∀ε > 0, ∃δ, 𝑥|0 < |𝑥 − 2| < δentonces
| 1 𝑥2 + 1 − 3| < δ
|2 |
| 𝑥 − 2| = | 1 𝑥2 − 4 | = | 1 (𝑥 + 2)(𝑥 − 2)| =
1 2
( ) 1
|𝑥 + 2||𝑥 − 2| < ε
|2 | |2 | |2 | 2
Suponemos que: 𝑓: [1. 5, 2. 5] → 𝑅
1 2ε 2ε
2
· 4. 5 · |𝑥 − 2| < ε; |𝑥 − 2| < 4.5
⇒δ = 4.5

, | |
∀ε > 0, ∃δ/||(𝑥, 𝑦) − (𝑎, 𝑏)|| < δ entonces ||𝑓(𝑥, 𝑦) − lim |< ε
|
| (𝑥,𝑦) → (𝑎,𝑏) |




Ejemplo:
3
2𝑥
Probar que lim 2 2 =0
(𝑥,𝑦) → (0,0) 𝑥 +𝑦

2 2 | 2𝑥3 |
∀ε > 0 ∃δ/ 𝑥 + 𝑦 < δ entonces | 2 2 | < ε
| 𝑥 +𝑦 |
3 2 2
| 2𝑥 | | 𝑥 | 𝑥 2 2
| 2 2 | = |2𝑥|| 2 2 | = |2𝑥| 2 2 ≤ |2𝑥| · 1 = 2|𝑥| < 2 𝑥 + 𝑦
| 𝑥 +𝑦 | | 𝑥 +𝑦 | 𝑥 +𝑦


2 2 2 2 ε ε
si quiero que 2 𝑥 + 𝑦 < ε, es decir, 𝑥 +𝑦 < 2
, basta tomar δ ≤ 2


Procedimiento para calcular un límite:
1.) Sustituir
lim 2𝑥𝑦 + 4 = 8
(𝑥,𝑦) → (1,2)
2.) Manipular y simplificar
3 3 2 2
lim
𝑥 𝑦−𝑥𝑦
= lim ( ) =
𝑥𝑦 𝑥 −𝑦 1
4 4 2 2 2 2 2
(𝑥,𝑦) → (1,1) 𝑥 −𝑦 (𝑥,𝑦) → (1,1) (𝑥 +𝑦 )(𝑥 −𝑦 )
lim
𝑥+𝑦+1−1
= lim ( 𝑥+𝑦+1−1)( 𝑥+𝑦+1+1) = lim
(𝑥+𝑦)
=
1
2 2
(𝑥,𝑦) → (1,−1) 𝑥 −𝑦 (𝑥,𝑦) → (1,−1) (𝑥2−𝑦2)( 𝑥+𝑦+1+1) (𝑥,𝑦) → (1,−1)
(𝑥+𝑦)(𝑥−𝑦)( 𝑥+𝑦+1+1) 4

2 2
𝑥
−𝑙𝑛 1+ 𝑦+1 ( 𝑥
)
𝑥
( )− ( ) +...⎤⎥⎦
−⎡⎢
𝑥 1 𝑥 1 𝑥
𝑥 2
lim
(𝑥,𝑦) → (0,0)
𝑦+1

𝑦
2 = lim
(𝑥,𝑦) → (0,0)
𝑦+1
⎣ 𝑦+1

𝑦
2
2 𝑦+1
= lim
(𝑥,𝑦) → (0,0)
2 (𝑦+1)2

𝑦
2 = lim
(𝑥,𝑦) → (0,0)
1
2 ( ) 𝑦



Definición. Dada una curva 𝐺(𝑥, 𝑦) = 0 que pasa por (𝑎, 𝑏) cuyos puntos
(𝑥, 𝑦) ∈ 𝐷𝑜𝑚𝑖𝑛𝑖𝑜 𝑑𝑒 𝑓
Supongamos 𝑦 = 𝑔(𝑥)
lim 𝑓(𝑥, 𝑦): = lim 𝑓(𝑥, 𝑔(𝑥))
(𝑥,𝑦) → (𝑎,𝑏) 𝑥→𝑎


Teorema. Si existe el límite, entonces coincide con el límite según cualquier dirección.
𝑥 𝑥
lim 𝑦
= [𝑥 = 𝑦] = lim 𝑥
=1
(𝑥,𝑦) → (0,0) 𝑥→0
𝑥 𝑥
lim 𝑦
= [𝑦 =− 𝑥] = lim −𝑥
=− 1
(𝑥,𝑦) → (0,0) 𝑥→0
𝑥 𝑥 1
lim 𝑦
= [𝑦 = 𝑚𝑥] = lim 𝑚𝑥
= 𝑚
⇒𝑚 ≠ 0
(𝑥,𝑦) → (0,0) 𝑥→0


3.) Intentar probar que el límite no existe.
3 3 4 3 2
𝑥𝑦 𝑚𝑥 𝑚𝑥
lim 2 6 = [𝑦 = 𝑚𝑥] = lim 2 6 6 = lim 6 4 =0
(𝑥,𝑦) → (0,0) 𝑥 +𝑦 𝑥→0 𝑥 +𝑚 𝑥 𝑥→0 1+𝑚 𝑥
3 3 3 6
3
lim
𝑥𝑦
2
𝑥 +𝑦
6 [
= 𝑥 = 𝑦 = lim ] 𝑦𝑦
6
𝑦 +𝑦
6 = lim
𝑦
2𝑦
6 =
1
2
(𝑥,𝑦) → (0,0) 𝑦→0 𝑦→0
$4.82
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
merche2002

Also available in package deal

Get to know the seller

Seller avatar
merche2002 Universidad de Málaga
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
5 year
Number of followers
0
Documents
32
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions