100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Differentiaalvergelijkingen

Rating
-
Sold
-
Pages
4
Uploaded on
06-09-2021
Written in
2021/2022

Korte maar krachtige samenvatting, compleet en zonder dubbelingen, met duidelijke voorbeelden als geheugensteun.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
H 9
Uploaded on
September 6, 2021
File latest updated on
February 14, 2023
Number of pages
4
Written in
2021/2022
Type
Summary

Subjects

Content preview

1. Conventies
2. Definities
3. Afgeleide
4. Toegevoegde constante
5. Expliciet en impliciet
6. Scheiden van variabelen
7. Methode van Euler
8. Oplossingsmethodes
8.1. Met x
8.2. Zonder x
8.3. Integrerende factor
8.4. Lissajous




1/4 © Peter Zomerdijk

, 1. Conventies

• voorbeelden zijn omkaderd

• DV : differentiaalvergelijking
• dx : differentiaal
dy
• y · dx = y'(x) = y' : de afgeleide van y naar x waarbij y een functie van x is

2. Definities
• DV : een functie waarin de onafhankelijke variabele x en de
afhankelijke variabele y en diens afgeleide(n) naar x voorkomen

y = x + y' + y''
• Orde van een DV : de hoogste afgeleide in die DV
• Graad van een DV : de hoogste macht van een afgeleide in die DV
• Lineaire DV : DV met graad 1
• Differentiaalquotiënt : synoniem voor de afgeleide

3. Afgeleide
d
y = xa + b ⇔ y' = dx (xa + b) = ax (a−1)

4. Toegevoegde constante
dy
• ∫ y′ = ∫ dx = ∫ ax (a−1) ⇔ ∫ dy = ∫ ax (a−1) dx ⇔ y = xa + C
• door de niet gedefinieerde constante C is de oplossing van een DV een oneindig aantal functies
zoals ook de integraal van een functie dat is
• C kan alleen berekend worden wanneer een punt bekend is, dit levert de particuliere oplossing
• C kan op een andere positie geplaatst worden door meerdere constanten te definiëren
1
y' = x ⇔ y = ln|x| + C1
Definieer C1 = ln|C2| waardoor y = ln|x| + ln|C2| = ln|C2 x|


5. Expliciet en impliciet
Wanneer in de oplossing van de DV y uit te drukken is in x is de oplossing expliciet, anders impliciet.

Expliciet: y = Cex Impliciet: sin(y) = xy + C


6. Scheiden van variabelen
Breng de ene variabele aan de ene kant van de vergelijking en de andere aan de andere kant
dy dy dy
y' = 6xy ⇔ dx = 6xy ⇔ = 6x dx ⇔ ∫ = ∫ 6x dx ⇔ ln|y| = 3x2 + C1
y y
2
Stel C1 = ln|C2| dan y = C2 e3x




2/4 © Peter Zomerdijk
$3.62
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
PAJZ
3.0
(1)

Get to know the seller

Seller avatar
PAJZ Eigen
Follow You need to be logged in order to follow users or courses
Sold
6
Member since
4 year
Number of followers
3
Documents
14
Last sold
1 year ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions