100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Exámenes de probabilidad

Rating
-
Sold
-
Pages
25
Grade
A+
Uploaded on
16-08-2021
Written in
2020/2021

Exámenes resueltos de probabilidad.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
August 16, 2021
Number of pages
25
Written in
2020/2021
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Sea {Xn }∞
n=1 una sucesión de VA independientes e idénticamente distribuidas, con Xn ∼ exp(1) ∀n.

n
X
A partir de ella se construye el proceso estocástico Yn = n − Xk , con n = 1, 2, 3 . . .
k=1

Da respuesta justificada a los apartados siguientes:

a) Se dispone de una realización de Xn que comienza con {1.1, 1.8, 0.7, 0.1, 1.2 . . .}, escribe la realización co-
rrespondiente de Yn desde n = 1 hasta n = 5.
b) Determina la función de densidad de probabilidad de Y1 , indicando claramente su rango.
c) Halla E(Yn ).
d) Calcula Var(Yn ).
e) Obtén, siendo n < m, RY [n, m].
f) ¿Es el proceso Yn estacionario en sentido amplio?

Puntuación (sobre 10) de cada apartado: a–1, b–2, c–2, d–2, e–2, f–1




Apartado a

Xn , Yn

P
n Xn Xn Yn 2
1 1.1 1.1 −0.1 Yn
2 1.8 2.9 −0.9 1 Xn
3 0.7 3.6 −0.6
4 0.1 3.7 0.3 0
5 1.2 4.9 0.1
−1 n
1 2 3 4 5


Apartado b

Y1 es una simple transformación lineal de una VA exponencial: Y1 = 1 − X1 . Aplicando el teorema fundamental,
escribirı́amos:



 x=1−y raı́z simple

y = g(x) = 1 − x ⇒ g 0 (x) = −1



 0 < x < +∞ ⇒ 0 < 1 − y < +∞ ⇒ −1 < −y < +∞ ⇒ −∞ < y < 1

por tanto,
fX (1 − y) ey−1
fY (z) = = = ey−1 con − ∞ < y < 1
| − 1| 1


Apartado c

1
Dado que las Xn son VA exp(1), sabemos que, para cualquier n, E(Xn ) = = 1. Por tanto,
1
n n n
!
X X X
E(Yn ) = E n − Xk =n− E(Xk ) = n − 1=n−n=0
k=1 k=1 k=1

,Apartado d

1
Dado que las Xn son VA exp(1), sabemos que, para cualquier n, Var(Xn ) = = 1. Por tanto,
12
n n n n
! !
ind
X X X X
Var(Yn ) = Var n − Xk = (−1)2 Var Xk = Var(Xk ) = 1=n
k=1 k=1 k=1 k=1



Apartado e

Como n < m, podemos decir que,
m n m m
!
X X X X
0
Ym = m − Xk = n + (m − n) − Xk + Xk = Yn + (m − n) − Xk = Yn + Ym−n
k=1 k=1 k=n+1 k=n+1

0
donde Ym−n es independiente de Yn , por tanto,

0 0 ind 0 
RY [n, m] = E(Yn Ym ) = E[Yn (Yn + Ym−n )] = E(Yn2 ) + E(Yn Ym−n E2
) = Var(Yn ) +  (Y
n) + 
E(Y )E(Y )=n
 n  
m−n


Apartado f

El proceso Yn es estacionario en media (ésta no depende de n), pero no en autocorrelación (ésta depende del
instante concreto, no de la diferencia de tiempos). Por tanto, no es estacionario en sentido amplio.

, Un estudiante de Ingenierı́a de Telecomunicación va a la Escuela cada dı́a lectivo en el coche de un amigo y vuelve
a su casa en autobús. Cada dı́a decide la lı́nea que utiliza de forma independiente, usando el autobús U1 con
probabilidad p. En caso contrario usa el U2. Si utiliza el U1, el tiempo en minutos que tarda en llegar a su casa,
que denotamos X1 , se puede modelar como una distribución uniforme U(19, 31). En caso de tomar el U2, el tiempo
en minutos que tarda en llegar a su casa es una VA X2 ∼ U(24, 36). Los tiempos de viaje de los autobuses son
independientes entre sı́ e independientes de lo ocurrido en dı́as diferentes. Sea X la VA que mide los minutos que
tarda el estudiante en llegar a su casa un dı́a lectivo cualquiera.

a) Calcula la probabilidad de que el estudiante tarde más de 27 minutos en llegar a su casa.
b) Si sabemos que el estudiante ha tardado más de 27 minutos en llegar a su casa, ¿cuál es la probabilidad de
que hubiera tomado el U2?
c) ¿Cuál deberı́a ser el valor de p para que el tiempo medio que el estudiante tarda en llegar a su casa un dı́a
lectivo sea de 28 minutos?
d) Calcula la varianza de X.
e) Si tomamos como referencia un mes donde el número de dı́as lectivos es 20, calcula el número medio de dı́as
lectivos en ese mes que el estudiante tarda menos de 27 minutos en llegar a su casa.
f) Considera ahora que el alumno siempre usa el U1 (p = 1) y que en el curso actual ha habido 108 dı́as lectivos.
¿Cuál es la probabilidad de que el estudiante haya empleado en total, durante todo el curso, más de 44 horas
realizando el trayecto de la universidad a su casa?

Puntuación (sobre 10) de cada apartado: a–2, b–1, c–1, d–2, e–2, f–2




Apartado a

Aplicamos el Teorema de las Probabilidades Totales:

P(X > 27) = P(X > 27 / U1 ) P(U1) + P(X > 27 / U2 ) P(U2) =
31 − 27 36 − 27 9 − 5p
= P(X1 > 27) · p + P(X2 > 27) · (1 − p) = ·p+ · (1 − p) =
31 − 19 36 − 24 12


Apartado b

En este caso aplicamos el Teorema de Bayes:

9(1 − p)
P(X > 27 / U2 ) P(U2) 12 9 − 9p
P(U2 / X > 27 ) = = =
P(X > 27) 9 − 5p 9 − 5p
12

Apartado c

Aplicamos de nuevo el Teorema de las Probabilidades Totales, en este caso para esperanzas:

E(X) = E(X / U1 ) P(U1) + E(X / U2 ) P(U2) =
31 + 19 36 + 24
= E(X1 ) · p + E(X2 ) · (1 − p) = ·p+ · (1 − p) = 30 − 5p
2 2

Por lo tanto,
28 − 30 2
E(X) = 30 − 5p = 28 ⇒ p= =
−5 5
$4.22
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
alejandrocomesaaalmuia

Get to know the seller

Seller avatar
alejandrocomesaaalmuia Universidade de Vigo
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
11
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions