100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting Statistiek Voor Pedagogen, Deel 2 (P0S19a)

Rating
-
Sold
5
Pages
57
Uploaded on
07-08-2021
Written in
2020/2021

Samenvatting van de lessen Statistiek deel 2, met toevoeging van nuttige tips uit de oefenzittingen. Met name uitleg over de formules, hoe deze te gebruiken en de theorie.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
August 7, 2021
Number of pages
57
Written in
2020/2021
Type
Summary

Subjects

Content preview

Statistiek voor pedagogen 2 AJ 2020-2021 Prof. Eva Ceulemans & Wim van Dooren




Kansrekening
Toeval
Een verschijnsel is een toevalsverschijnsel als:
- De individuele uitkomsten onzeker zijn
- Bij een groot aantal herhalingen regelmatige verdelingen van uitkomsten aanwezig is

Kans → De fractie keren dat de gebeurtenis voorkomt wanneer het toevalsverschijnsel heel veel keer herhaald
wordt.
Soms kan er ook een alternatief zijn: iedere uitkomst heeft een vooraf gekende kans
Voorbeeld: dobbelspel, een munt opgooien



Kansmodellen
Kansmodel → beschrijving van een toevalsverschijnsel:
- Lijst van mogelijke uitkomsten
- Kans voor elke uitkomst


Belangrijke begrippen
Uitkomstenruimte S → De verzameling van alle mogelijke uitkosten van een toevalsverschijnsel
Voorbeelden:
- Werp 2 dobbelstenen en neem de som van het aantal ogen: S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
- Werp een muntstuk op: S = {Kop, Munt}
- Kies een cijfer van 0 tot 9: S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Gooi een muntstuk 2x op en tel het aantal keer kop: S = {0, 1, 2}
- Trek een kaart en noteer de soort: S = {Harten, Schoppen, Ruiten, Klaveren}

Gebeurtenis A → Een deelverzameling van de uitkomstenruimte
Voorbeelden:
- Werp 2 dobbelstenen en neem de som van het aantal ogen. De gebeurtenis ‘student’ wint: A = {2, 3, 4,
9, 10, 11, 12}.
- Gooi een muntstuk 2x op en tel het aantal keer kop. De gebeurtenis
‘meer dan 1 keer kop’: A = {2}

Kans → De kans P(A) van een gebeurtenis A is de fractie keren dat de
gebeurtenis voorkomt wanneer het toevalsverschijnsel heel veel keer herhaald wordt; hierbij is de kans op A
gelijk aan de som van de kansen op de uitkomsten waaruit A bestaat.
Voorbeelden:
- Werp een dobbelsteen. De gebeurtenissen ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’ hebben allemaal een kans van 1/6.
- Werp een zuiver muntstuk op. Gebeurtenissen ‘kop’ en ‘munt’ hebben elk een kans van 0,5.

Complement Ac van gebeurtenis A → verzameling van alle uitkomsten die niet tot A behoren.
Voorbeelden:
- Werp 2 dobbelstenen en neem de som van het aantal ogen. De gebeurtenis ‘student wint’: A = {2, 3, 4,
9, 10, 11, 12}
o → Ac = {5, 6, 7, 8} = prof wint
- Gooi een muntstuk 2x op en tel het aantal keer munt. De gebeurtenis
‘meer dan 1 keer munt’: A = {2} → Ac = {0, 1}
Complementen = ALTIJD disjunct.




1

,Statistiek voor pedagogen 2 AJ 2020-2021 Prof. Eva Ceulemans & Wim van Dooren




Disjunctie van gebeurtenissen → A en B zijn disjunct als ze geen gemeenschappelijke uitkomst hebben, met
andere woorden als hun doorsnede leeg is.
Voorbeelden:
- Werp 2 dobbelstenen en neem de som van het aantal ogen. De gebeurtenis ‘student wint’ en ‘prof
wint’ zijn disjunct
➔ A en Ac zijn ALTIJD disjunct!!!!
- Gooi een muntstuk 2x op en tel het aantal keer kop. De
gebeurtenissen ‘minder dan 1 keer kop’ en ‘meer dan 1 keer kop’ zijn
disjunct.
Disjuncten ≠ altijd complementair
Disjuncten = ALTIJD afhankelijk

Voorwaardelijke of conditionele kans P(B|A) → Kans op gebeurtenis B, gegeven dat gebeurtenis A optreedt.
Voorbeelden:
- Werp 2 dobbelstenen en neem de som van het aantal ogen. Gebeurtenis A = ‘student wint’ en
gebeurtenis B = ‘even getal’.
➔ Wat is de kans dat de student wint, als je weet dat het getal even is? P(A|B) = 8/18
- Trek 2 kaarten (ZTL) uit een pak kaarten. Gebeurtenis A = ‘1e kaart is aas’ en gebeurtenis B = ‘2e kaart
is aas’.
➔ Wat is de kans dat de tweede kaart aas is, als de eerste kaart aas is? P (B|A) = 3/51


Onafhankelijkheid van gebeurtenissen → A en B zijn onafhankelijk als kennis over het al dan niet optreden van
de ene geberutenis de kans die we aan de andere gebeurtenis toekennen niet verandert. → P(B|A) = P(B)
Voorbeelden:
- Werp twee dobbelstenen op en neem de som van het aantal ogen. Gebeurtenis A = ‘student wint’ en
gebeurtenis B = ‘even getal’
➔ Wat is de kans dat de student wint, als je weet dat het getal even is = P(A|B) = 8/18 = Kans dat de student
wint = P(A) = 16/36 => onafhankelijkheid
- Kennis over het geslacht van het eerste kind verandert niets aan de kans op een jongen/meisje bij het
tweede kind. Gebeurtenissen ‘eerste kind is meisje’ en ‘tweede kind is onafhankelijk’.

Afhankelijke gebeurtenissen → A en B zijn afhankelijk als kennis over het al dan niet optreden van de ene
gebeurtenis de kans die we aan de andere gebeurtenis toekennen wel verandert. → P(B|A) ≠ P(B)
Voorbeelden:
- Werp 2 dobbelstenen en neem de som van het aantal ogen. Gebeurtenis A = ‘student wint’ en
gebeurtenis B = ‘getal groter dan 7’.
➔ Wat is de kans dat de student wint, als je weet dat het getal > 7 = P(A|B) = 10/15
≠ Kans dat de student wint = P(A) = 16/26

Als A en B onafhankelijk zijn, dan zijn Ac en Bc eveneens onafhankelijk en is Ac onafhankelijk van B.


Basisregels voor kansen
0 ≤ P(A) ≤ 1
De kans ligt altijd tussen 0 en 1.
P(S) =1
P(Ac) = 1 – P(A)
Complementregel


A en B hebben niets gemeenschappelijks (ze zijn disjunct)

A en B zijn onafhankelijk




2

,Statistiek voor pedagogen 2 AJ 2020-2021 Prof. Eva Ceulemans & Wim van Dooren



Complementregel
Voorbeeld
Twee dobbelstenen: kans dat ‘prof wint’ = 1 – kans dat ‘student wint’
P(Ac) = 1– P(A) = 1 – =


Optelregel

Kans op A of B = kans op A plus kans op B, als A en B niets gemeenschappelijks hebben.
Voorbeeld
Gooi een muntstuk 2x op en tel het aantal keren kop: wat is de kans dat ‘meer dan 1 keer kop’ OF ‘minder dan
1 keer kop’ is?




Productregel

Kans op A en B = kans op A maal kans op B, als A en B onafhankelijk zijn.
Voorbeeld
Twee dobbelstenen: wat is de kans dat ‘student wint’ EN dat ‘even getal’
is?


Algemene optelregel
Wat als
Er is geen sprake van disjunctie.
Dan gaan we voor de algemene optelregel.




Algemene productregel
Wat indien P(B|A) ≠ P(B)?
Er is geen sprake van onafhankelijkheid.
Dan gebruiken we de algemene productregel.




Boomdiagrammen
Sommige problemen in kansrekening vereisen het
combineren van verschillende basisregels.

Voorbeeld
5% van de Vlamingen tussen de 25 en 30 jaar is
vegetariër. Indien iemand in deze leeftijdscategorie
vegetariër is, is er 28% kans dat hij/zij een auto


3

, Statistiek voor pedagogen 2 AJ 2020-2021 Prof. Eva Ceulemans & Wim van Dooren



bezit. 51,6% van de Vlamingen tussen 25 en 30 jaar bezit wel een auto. Hoeveel % van de Vlamingen bezit een
auto?
Stap 1: Benoem je gebeurtenissen A en B.
A = Vegetariër zijn
B = Een auto bezitten

Stap 2: Noteer wat gegeven en gevraagd is.
Gegeven:
P(A) = 0,05
P(B|A) = 0,28


Gevraagd:
P(B) = ?

Stap 3: Maak een boomdiagram en vul de kansen in die je
hebt.

Stap 4: Vul de ontbrekende kansen in.
- Complementregel
- Productregel
- Gezamenlijke kansen tellen op tot basiskansen
Complementregel Productregel




Gezamenlijke kansen tellen op tot basiskansen




4
$6.04
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
chantalmichels Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
67
Member since
4 year
Number of followers
39
Documents
43
Last sold
2 weeks ago

3.7

12 reviews

5
5
4
2
3
3
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions