100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Rutgers UniversityCSE 345ch06-9244-vectorist

Rating
-
Sold
-
Pages
60
Grade
A+
Uploaded on
16-07-2021
Written in
2020/2021

Solutions to Additional Problems 6.26. A signal x(t) has Laplace transform X(s) as given below. Plot the poles and zeros in the s-plane and determine the Fourier transform of x(t) without inverting X(s). (a) X(s) = s2s+5 2+1 s+6 X(s) = (s + j)(s − j) (s +3)(s +2) zeros at: ±j poles at: −3, −2 X(jω) = X(s)|s=jω = −ω2 + 1 −ω2 + 5jω + 6 Pole−Zero Map Real Axis Imag Axis −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure P6.26. (a) Pole-Zero Plot of X(s) (b) X(s) = s2s+2−s+1 1 X(s) = (s +1)(s − 1) (s + 0.5 − j3 4)(s + 0.5 + j3 4) zeros at: ±1 1poles at: −1 ± j√3 2 X(jω) = X(s)|s=jω = −ω2 − 1 −ω2 + jω + 1 Pole−Zero Map Real Axis Imag Axis −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure P6.26. (b) Pole-Zero Plot of X(s) (c) X(s) = s−14 + s−22 X(s) = 3(s − 10 3 ) (s − 4)(s − 2) zero at: 10 3 poles at: 4, 2 X(jω) = X(s)|s=jω = 1 jω − 4 + 2 jω − 2 2Pole−Zero Map Real Axis Imag Axis 0 0.5 1 1.5 2 2.5 3 3.5 4 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure P6.26. (b) Pole-Zero Plot of X(s) 6.27. Determine the bilateral Laplace transform and ROC for the following signals: (a) x(t) = e−tu(t +2) X(s) = −∞ ∞ x(t)e−st dt = −∞ ∞ e−tu(t +2)e−st dt = −∞2 e−t(1+s) dt = e2(1+s) 1 + s ROC: Re(s) > -1 (b) x(t) = u(−t +3) X(s) = −∞ 3 e−st dt = −e−3s s ROC: Re(s) < 0 3(c) x(t) = δ(t +1) X(s) = −∞ ∞ δ(t +1)e−st dt = es ROC: all s (d) x(t) = sin(t)u(t) X(s) = 0∞ 21j ejt − e−jt e−st dt = 0∞ 21j et(j−s) dt − 0∞ 21j e−t(j+s) dt = 12j j−−1s − j +1 s = 1 (1 + s2) ROC: Re(s) > 0 6.28. Determine the unilateral Laplace transform of the following signals using the defining equation: (a) x(t) = u(t − 2) X(s) = 0−∞ x(t)e−st dt = 0−∞ u(t − 2)e−st dt = 2∞ e−st dt = e−2s s (b) x(t) = u(t +2) X(s) = 0−∞ u(t +2)e−st dt = 0−∞ e−st dt = 1 s (c) x(t) = e−2tu(t +1) 4X(s) = 0−∞ e−2tu(t +1)e−st dt = 0−∞ e−t(s+2) dt = 1 s + 2 (d) x(t) = e2tu(−t +2) X(s) = 0−∞ e2tu(−t +2)e−st dt = 0−2 et(2−s) dt = e2(2−s) − 1 2 − s (e) x(t) = sin(ωot) X(s) = 0−∞ 21j ejωot − e−jωot e−st dt = 12j 0−∞ et(jωo−s) dt − 0−∞ e−t(jωo+s) dt = 12j jω−o 1− s − jωo1+ s = ωo s2 + ω2 o (f) x(t) = u(t) − u(t − 2) X(s) = 0−2 e−st dt = 1 − e−2s s (g) x(t) = sin(πt), 0 < t < 1 0, otherwise X(s) = 0−1 21j ejπt − e−jπt e−st dt = π(1 + e−s) s2 + π2 56.29. Use the basic Laplace transforms and the Laplace transform properties given in Tables D.1 and D.2 to determine the unilateral Laplace transform of the following signals: (a) x(t) = dt d {te−tu(t)} a(t) = te−tu(t) ←−−−→ Lu A(s) = 1 (s +1)2 x(t) = d dta(t) Lu ←−−−→ X(s) = s (s +1)2 (b) x(t) = tu(t) ∗ cos(2πt)u(t) a(t) = tu(t) Lu ←−−−→ A(s) = 1 s2 b(t) = cos(2πt)u(t) Lu ←−−−→ s s2 + 4π2 x(t) = a(t) ∗ b(t) Lu ←−−−→ X(s) = A(s)B(s) X(s) = 1 s2(s2 + 4π2) (c) x(t) = t3u(t) a(t) = tu(t) Lu ←−−−→ A(s) = 1 s2 b(t) = −ta(t) Lu ←−−−→ B(s) = d dsA(s) = −s32 x(t) = −tb(t) Lu ←−−−→ X(s) = d dsB(s) = s64 (d) x(t) = u(t − 1) ∗ e−2tu(t − 1) a(t) = u(t) Lu ←−−−→ A(s) = 1 s b(t) = a(t − 1) Lu ←−−−→ B(s) = e−s s c(t) = e−2tu(t) ←−−−→ Lu C(s) = 1 s + 2 d(t) = e−2c(t − 1) ←−−−→ Lu D(s) = e−(s+2) s + 2 x(t) = b(t) ∗ d(t) Lu ←−−−→ X(s) = B(s)D(s) X(s) = e−2(s+1) s(s +2) 6(e) x(t) = 0t e−3τ cos(2τ)dτ a(t) = e−3t cos(2t)u(t) ←−−−→ Lu A(s) = s + 3 (s +3)2 + 4 −∞ t a(τ)dτ ←−−−→ Lu 1s −∞ 0− a(τ)dτ + A(ss) X(s) = s + 3 s((s +3)2 +4) (f) x(t) = t dt d (e−t cos(t)u(t)) a(t) = e−t cos(t)u(t) ←−−−→ Lu A(s) = s + 1 (s +1)2 + 1 b(t) = d dta(t) Lu ←−−−→ B(s) = s(s +1) (s +1)2 + 1 x(t) = tb(t) Lu ←−−−→ X(s) = − d dsB(s) X(s) = −s2 − 4s − 2 (s2 + 2s +2)2 6.30. Use the basic Laplace transforms and the Laplace transform properties given in Tables D.1 and D.2 to determine the time signals corresponding to the following unilateral Laplace transforms: (a) X(s) = s+2 1 s+3 1 X(s) = 1 s + 2 + −1 s + 3 x(t) = e−2t − e−3t u(t) (b) X(s) = e−2s ds d (s+1) 1 2 A(s) = 1 (s +1)2 Lu ←−−−→ a(t) = te−tu(t) B(s) = d dsA(s) Lu ←−−−→ b(t) = −ta(t) = −t2e−tu(t) X(s) = e−2sB(s) ←−−−→ Lu x(t) = b(t − 2) = −(t − 2)2e−(t−2)u(t − 2) (c) X(s) = (2s+1) 1 2+4 B(s a ) Lu ←−−−→ ab(at) 1 (s +1)2 + 4 Lu ←−−−→ 12 e−t sin(2t)u(t) x(t) = 1 4 e−0.5t sin(t)u(t) 7(d) X(s) = s ds d22 s21+9 + s+3 1 A(s) = 1 s2 + 9 Lu ←−−−→ a(t) = 1 3 sin(3t)u(t) B(s) = d dsA(s) Lu ←−−−→ b(t) = −ta(t) = − t 3 sin(3t)u(t) C(s) = d dsB(s) Lu ←−−−→ c(t) = −tb(t) = t2 3 sin(3t)u(t) D(s) = sC(s) Lu ←−−−→ d(t) = d dtc(t) − c(0−) = 23t sin(3t)u(t) + t2 cos(3t)u(t) E(s) = 1 s + 3 Lu ←−−−→ e(t) = e−3tu(t) x(t) = e(t) + d(t) = e−3t + 23t sin(3t) + t2 cos(3t) u(t) 6.31. Given the transform pair cos(2t)u(t) Lu ←−−−→ X(s), determine the time signals corresponding to the following Laplace transforms: (a) (s +1)X(s) sX(s) + X(s) Lu ←−−−→ d dtx(t) + x(t) = [−2 sin(2t) +cos(2t)] u(t) (b) X(3s) X(s a ) Lu ←−−−→ ax(at) x(t) = 1 3 cos(2 3 t)u(t) (c) X(s +2) X(s +2) Lu ←−−−→ e−2tx(t) x(t) = e−2t cos(2t)u(t) (d) s−2X(s) B(s) = 1 s X(s) Lu ←−−−→ −∞ t x(τ)dτ Lu ←−−−→ −∞ t cos(2τ)u(τ)dτ Lu ←−−−→ 0t cos(2τ)dτ 8B(s) Lu ←−−−→ 12 sin(2t) 1 s B(s) Lu ←−−−→ 0t 1 2 sin(2τ)dτ Lu ←−−−→ 1 − cos(2t) 4 u(t) (e) ds d e−3sX(s) A(s) = e−3sX(s) ←−−−→ Lu a(t) = x(t − 3) = cos(2(t − 3))u(t − 3) B(s) = d dsA(s) Lu ←−−−→ b(t) = −ta(t) = −t cos(2(t − 3))u(t − 3) 6.32. Given the transform pair x(t) Lu ←−−−→ 2s s2+2, where x(t) = 0 for t < 0, determine the Laplace transform of the following time signals: (a) x(3t) x(3t) Lu ←−−−→ 13 X(s 3 ) X(s) = 23s (3s)2 + 2 = 6s s2 +18 (b) x(t − 2) x(t − 2) Lu ←−−−→ e−2sX(s) = e−2s 2s s2 + 2 (c) x(t) ∗ dt d x(t) b(t) = d dtx(t) Lu ←−−−→ B(s) = sX(s) y(t) = x(t) ∗ b(t) Lu ←−−−→ Y (s) = B(s)X(s) = s[X(s)]2 Y (s) = s s22+ 2 s 2 (d) e−tx(t) e−tx(t) ←−−−→ Lu X(s +1) = 2(s +1) (s +1)2 + 2 9(e) 2tx(t) 2tx(t) Lu ←−−−→ −2 d ds X(s) = (4s2s2+2) − 82 (f) 0t x(3τ)dτ 0t x(3τ)dτ ←−−−→ Lu Y (s) = X3(s3s) Y (s) = 2 s2 +18 6.33. Use the s-domain shift property and the transform pair e−atu(t) ←−−−→ Lu s+1a to derive the unilateral Laplace transform of x(t) = e−at cos(ω1t)u(t). e−atu(t) ←−−−→ Lu 1 s + a x(t) = e−at cos(ω1t)u(t) = 12 e−at ejω1t + e−jω1t u(t) Using the s-domain shift property: X(s) = 1 2 (s − jω11) + a + (s + jω11) + a = 12 2(s + a) (s + a)2 + ω12 = (s + a) (s + a)2 + ω12 6.34. Prove the following properties of the unilateral Laplace transform: (a) Linearity z(t) = ax(t) + by(t) Z(s) = 0∞ z(t)e−st dt = 0∞ (ax(t) + by(t)) e−st dt = 0∞ ax(t)e−st dt + 0∞ by(t)e−st dt = a 0∞ x(t)e−st dt + b 0∞ y(t)e−st dt = aX(s) + bY (s) (b) Scaling z(t) = x(at) 10Z(s) = 0∞ x(at)e−st dt = 1 a 0∞ x(τ)e− as τ dτ = 1 a X(s a ) (c) Time shift z(t) = x(t − τ) Z(s) = 0∞ x(t − τ)e−st dt Let m = t − τ Z(s) = −∞τ x(m)e−s(m+τ) dm If x(t − τ)u(t) = x(t − τ)u(t − τ) Z(s) = 0∞ x(m)e−sme−sτ dm = e−sτX(s) (d) s-domain shift z(t) = esotx(t) Z(s) = 0∞ esotx(t)e−st dt = 0∞ x(t)e−(so−s)t dt = X(s − so) (e) Convolution z(t) = x(t) ∗ y(t) = 0∞ x(τ)y(t − τ) dτ; x(t), y(t) causal Z(s) = 0∞ 0∞ x(τ)y(t − τ) dτ e−st dt = 0∞ 0∞ x(τ)y(m) dτ e−sme−sτ dm = 0∞ x(τ)e−sτ dτ 0∞ y(m)e−sm dm = X(s)Y (s) 11(f) Differentiation in the s-domain z(t) = −tx(t) Z(s) = 0∞ −tx(t)e−st dt = 0∞ x(t)ds d (e−st) dt = 0∞ ds d x(t)e−st dt Assume: 0∞(.) dt and ds d (.) are interchangeable. Z(s) = d ds 0∞ x(t)e−st dt Z(s) = d ds X(s) 6.35. Determine the initial value x(0+) given the following Laplace transforms X(s): (a) X(s) = s2+51s−2 x(0+) = lim s→∞ sX(s) = s s2 + 5s − 2 = 0 (b) X(s) = s2+2 s+2 s−3 x(0+) = lim s→∞ sX(s) = s2 + 2s s2 + 2s − 3 = 1 (c) X(s) = e−2s s26+2 s2+s−s2 x(0+) = lim s→∞ sX(s) = e−2s 6s3 + s2 s2 + 2s − 2 = 0 6.36. Determine the final value x(∞) given the following Laplace transforms X(s): (a) X(s) = s22+5 s2+3 s+1 x(∞) = lim s→0 sX(s) = 2s3 + 3s s2 + 5s + 1 = 0 (b) X(s) = s3+2 s+2 s2+s x(∞) = lim s→0 sX(s) = s + 2 s2 + 2s + 1 = 2 12(c) X(s) = e−3s s2(ss+2) 2+12 x(∞) = lim s→0 sX(s) = e−3s 2s2 + 1 (s +2)2 = 14 6.37. Use the method of partial fractions to find the time signals corresponding to the following unilateral Laplace transforms: (a) X(s) = s2+3 s+3 s+2 X(s) = s + 3 s2 + 3s + 2 = A s + 1 + B s + 2 1 = A + B 3 = 2A + B X(s) = 2 s + 1 + −1 s + 2 x(t) = 2e−t − e−2t u(t) (b) X(s) = 2ss22+10 +5ss+6 +11 X(s) = 2s2 +10s +11 s2 + 5s + 6 = 2 − 1 (s +2)(s +3) 1 (s +2)(s +3) = A s + 2 + B s + 3 0 = A + B 1 = 3A + 2B X(s) = 2 − 1 s + 2 + 1 s + 3 x(t) = 2δ(t) + e−3t − e−2t u(t) (c) X(s) = s22+2 s−s1+1 X(s) = 2s − 1 s2 + 2s + 1 = A s + 1 + B (s +1)2 2 = A −1 = A + B x(t) = 2e−t − 3te−t u(t) (d) X(s) = s3+3 5ss+4 2+2s X(s) = 5s + 4 s3 + 3s2 + 2s = A s + B s + 2 + C s + 1 130 = A + B + C 5 = 3A + B + 2C 4 = 2A X(s) = 2 s + −3 s + 2 + 1 s + 1 x(t) = 2 − 3e−2t + e−t u(t) (e) X(s) = (s+2)( ss22−+2 3 s+1) X(s) = s2 − 3 (s +2)(s2 + 2s +1) = A s + 2 + B s + 1 + C (s +1)2 1 = A + B 0 = 2A + 3B + C −3 = A + 2B + 2C X(s) = 1 s + 2 + −2 (s +1)2 x(t) = e−2t − 2te−t u(t) (f) X(s) = s2+2 3s+2 s+10 X(s) = 3s + 2 s2 + 2s +10 = 3(s +1) − 1 (s +1)2 + 32 x(t) = 3e−t cos(3t) − 13e−t sin(3t) u(t) (g) X(s) = (s+2)( 4s2+8 s2+2 s+10 s+5) X(s) = 2 s + 2 + 2(s +1) (s +1)2 + 22 + −2 (s +1)2 + 22 x(t) = 2e−2t + 2e−t cos(2t) − e−t sin(2t) u(t) (h) X(s) = (s+2)( 3s2+10 s2+6 s+10 s+10) X(s) = 3s2 +10s +10 (s +2)(s2 + 6s +10) = A s + 2 + Bs + C s2 + 6s +10 3 = A + B 10 = 6A + 2B + C 10 = 10A + 2C X(s) = 1 s + 2 + 2(s +3) (s +3)2 + 1 − 6 (s +3)2 + 1 x(t) = e−2t + 2e−3t cos(t) − 6e−3t sin(t) u(t) 14(i) X(s) = 2s2+11 s2+5 s+16+ s+6e−2s X(s) = 2s2 +11s +16 + e−2s s2 + 5s + 6 = 2 + s + 4 s2 + 5s + 6 + e−2s s2 + 5s + 6 X(s) = 2 + −1 s + 3 + 2 s + 2 − e−2s 1 s + 3 + e−2s 1 s + 2 x(t) = 2δ(t) + 2e−2t − e−t u(t) + e−2(t−2) − e−3(t−2) u(t − 2) 6.38. Determine the forced and natural responses for the LTI systems described by the following differential equations with the specified input and initial conditions: (a) dt d y(t) + 10y(t) = 10x(t), y(0−) = 1, x(t) = u(t) X(s) = 1 s Y (s)(s + 10) = 10X(s) + y(0−) Y f(s) = 10X(s) s +10 = 10 s(s +10) = 1 s + −1 s +10 yf(t) = 1 − e−10t u(t) Y n(s) = y(0−) s +10 yn(t) = e−10tu(t) (b) dt d22 y(t) + 5 dt d y(t) + 6y(t) = −4x(t) − 3 dt d x(t), y(0−) = −1, dt d y(t) t=0− = 5, x(t) = e−tu(t) Y (s)(s2 + 5s +6) − 5 + s + 5 = (−4 − 3s) 1 s + 1 Y (s) = −1 (s +1)(s +2)(s +3) + s (s +2)(s +3) = Y f(s) + Y n(s) Y f(s) = −0.5 s + 1 + −2 s + 2 + 2.5 s + 3 yf(t) = −0.5e−t − 2e−2t + 2.5e−3t u(t) Y n(s) = −2 s + 2 + 3 s + 3 yn(t) = −2e−2t + 3e−3t u(t) (c) dt d22 y(t) + y(t) = 8x(t), y(0−) = 0, dt d y(t) t=0− = 2, x(t) = e−tu(t) Y (s)(s2 + 1) = 8X(s) + 2 15Y f(s) = 4 s + 1 + 4 s2 + 1 − 4s s2 + 1 yf(t) = 4 e−t +sin(t) − cos(t) u(t) Y n(s) = 2 s2 + 1 yn(t) = 2 sin(t)u(t) (d) dt d22 y(t) + 2 dt d y(t) + 5y(t) = dt d x(t), y(0−) = 2, dt d y(t) t=0− = 0, x(t) = u(t) Y (s)(s2 + 2s +5) = sX(s) + sy(0−) + 2y(0−) Y f(s) = 1 (s +1)2 + 22 yf(t) = 1 2 e−t sin(2t)u(t) Y n(s) = 2(s +2) (s +2)2 + 1 yn(t) = 2e−t cos(t)u(t) 6.39. Use Laplace transform circuit models to determine the current y(t) in the circuit of Fig. P6.39 assuming normalized values R = 1Ω and L = 1 2 H for the specified inputs. The current through the inductor at time t = 0− is 2

Show more Read less











Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
July 16, 2021
Number of pages
60
Written in
2020/2021
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Garcia Walden University
View profile
Follow You need to be logged in order to follow users or courses
Sold
915
Member since
4 year
Number of followers
396
Documents
2114
Last sold
1 week ago
High Scoring Grades

I have everything you need to score high in your exams!!

4.1

154 reviews

5
97
4
15
3
22
2
8
1
12

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions