Algebraic fractions
Remember about identifying and removing a common factor first to simplify
the algebraic expression.
Common factors may be “cancelled out”
Add “like” terms together.
If necessary, factorize the remainder expression to obtain solutions for x.
Some exercises for you to do:
20𝑑2 − 50𝑑3 + 10𝑑 𝑥2 + 𝑦2
𝑎) ℎ)
−10𝑑 (𝑥 + 𝑦)2
1 2 1
3𝑏 2 15 𝑥 + 𝑥2 + 𝑥3
𝑏) ÷ 𝑖)
8𝑎 4 (𝑥 + 1)2
𝑥 𝑎 𝑐 3 4−𝑝 3
𝑐) ÷( × ) 𝑗) − +
𝑦 𝑏 𝑑 2 8𝑝 4𝑝
3 2 3−𝑥 3−𝑥 3−𝑥
𝑑) + 𝑘) + −
𝑥 𝑦 3𝑥 3 3𝑥 2
3 2 4𝑡 2 𝑘 4 − 𝑘 3 2𝑡
𝑒) 2 + 2 𝑙) × ÷
𝑥 𝑦 3𝑘 3 2𝑡 3
1 1
𝑎 + 3𝑥 2 − 8𝑥
𝑓) 𝑏 𝑚)
1 3𝑥 2
𝑎+𝑏
60𝑥 6 𝑦 3 − 15𝑥 4 𝑦 4
𝑔)
−5𝑥 3 𝑦 2
, Memorandum
20𝑑2 − 50𝑑3 + 10𝑑
𝑎)
−10𝑑
10𝑑(2𝑑 − 5𝑑2 + 1)
= (𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 10𝑑)
−10𝑑
= −(2𝑑 − 5𝑑2 + 1)
= −2𝑑 + 5𝑑2 − 1
3𝑏 2 15
𝑏) ÷
8𝑎 4
3𝑏 2 4
= ×
8𝑎 15
1𝑏 2 1
= ×
2𝑎 5
𝑏2
=
10𝑎
𝑥 𝑎 𝑐
𝑐) ÷( × )
𝑦 𝑏 𝑑
𝑥 𝑎𝑐
= ÷( )
𝑦 𝑏𝑑
𝑥 𝑏𝑑
= ×( )
𝑦 𝑎𝑐
𝑥𝑏𝑑
=
𝑦𝑎𝑐
3 2
𝑑) +
𝑥 𝑦
3𝑦 + 2𝑥
=
𝑥𝑦
Remember about identifying and removing a common factor first to simplify
the algebraic expression.
Common factors may be “cancelled out”
Add “like” terms together.
If necessary, factorize the remainder expression to obtain solutions for x.
Some exercises for you to do:
20𝑑2 − 50𝑑3 + 10𝑑 𝑥2 + 𝑦2
𝑎) ℎ)
−10𝑑 (𝑥 + 𝑦)2
1 2 1
3𝑏 2 15 𝑥 + 𝑥2 + 𝑥3
𝑏) ÷ 𝑖)
8𝑎 4 (𝑥 + 1)2
𝑥 𝑎 𝑐 3 4−𝑝 3
𝑐) ÷( × ) 𝑗) − +
𝑦 𝑏 𝑑 2 8𝑝 4𝑝
3 2 3−𝑥 3−𝑥 3−𝑥
𝑑) + 𝑘) + −
𝑥 𝑦 3𝑥 3 3𝑥 2
3 2 4𝑡 2 𝑘 4 − 𝑘 3 2𝑡
𝑒) 2 + 2 𝑙) × ÷
𝑥 𝑦 3𝑘 3 2𝑡 3
1 1
𝑎 + 3𝑥 2 − 8𝑥
𝑓) 𝑏 𝑚)
1 3𝑥 2
𝑎+𝑏
60𝑥 6 𝑦 3 − 15𝑥 4 𝑦 4
𝑔)
−5𝑥 3 𝑦 2
, Memorandum
20𝑑2 − 50𝑑3 + 10𝑑
𝑎)
−10𝑑
10𝑑(2𝑑 − 5𝑑2 + 1)
= (𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 10𝑑)
−10𝑑
= −(2𝑑 − 5𝑑2 + 1)
= −2𝑑 + 5𝑑2 − 1
3𝑏 2 15
𝑏) ÷
8𝑎 4
3𝑏 2 4
= ×
8𝑎 15
1𝑏 2 1
= ×
2𝑎 5
𝑏2
=
10𝑎
𝑥 𝑎 𝑐
𝑐) ÷( × )
𝑦 𝑏 𝑑
𝑥 𝑎𝑐
= ÷( )
𝑦 𝑏𝑑
𝑥 𝑏𝑑
= ×( )
𝑦 𝑎𝑐
𝑥𝑏𝑑
=
𝑦𝑎𝑐
3 2
𝑑) +
𝑥 𝑦
3𝑦 + 2𝑥
=
𝑥𝑦