100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Machine Learning (880083-M-6)

Rating
-
Sold
9
Pages
93
Uploaded on
14-06-2021
Written in
2020/2021

Full course with all notes and explanations (excluding python part).

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 14, 2021
File latest updated on
June 14, 2021
Number of pages
93
Written in
2020/2021
Type
Summary

Subjects

Content preview

Machine Learning
Cicek Guven, Itir Onal



This course covers four ML algorithms: Decision Tree, Perceptron, Logistic Regression and Neural
Networks. The first chapter is about Machine Learning in general. The fourth chapter covers the
optimization problem (decoupled from a model), which is applicable to any of the algorithms. The fifth
chapter discusses the optimal representation of data in a model.



LECTURE 1 INTRODUCTION ....................................................................................................................... 3

1.1 MACHINE LEARNING .......................................................................................................................................... 3
1.2 TYPES OF LEARNING PROBLEMS ............................................................................................................................ 4
1.3 EVALUATION: HOW WELL IS THE ALGORITHM LEARNING? .......................................................................................... 5

LECTURE 2 DECISION TREE......................................................................................................................... 7

2.1 LEARNING RULES WHILE PLAYING A GAME............................................................................................................... 7
2.2 HOW TO BUILD A DECISION TREE ........................................................................................................................... 8
2.3 EFFICIENCY, SPEED AND DEPTH OF A DT ............................................................................................................... 14
2.4 IMPURITY MEASURES ........................................................................................................................................ 16
2.5 HOW CAN WE USE DECISION TREES FOR REGRESSION?............................................................................................ 17
2.6 ADVANTAGES AND DISADVANTAGES OF DECISION TREES .......................................................................................... 17

LECTURE 3 PERCEPTRON ......................................................................................................................... 18

3.1 WHAT IS A PERCEPTRON?.................................................................................................................................. 18
3.2 ALGORITHM.................................................................................................................................................... 19
3.3 POSSIBLE STUMBLING BLOCKS ............................................................................................................................ 25

LECTURE 4 GRADIENT DESCENT ............................................................................................................... 30

4.1 INTRODUCTION ............................................................................................................................................... 30
4.2 ERROR AND OPTIMIZATION ................................................................................................................................ 31
4.3 SLOPE, DERIVATIVE AND GRADIENT...................................................................................................................... 33
4.4 STOCHASTIC GRADIENT DESCENT (SGD)............................................................................................................... 36

LECTURE 5 REPRESENTATION .................................................................................................................. 38

5.1 OVERVIEW OF ML PIPELINE ............................................................................................................................... 38
5.2 FEATURE ENGINEERING ..................................................................................................................................... 38
5.3 DOMAIN DEPENDENCE ...................................................................................................................................... 39
5.4 CHOOSING FEATURES ....................................................................................................................................... 40
5.5 TEXT CLASSIFICATION........................................................................................................................................ 46
5.6 IMAGE CLASSIFICATION ..................................................................................................................................... 49
5.7 FEATURE ABLATION ANALYSIS ............................................................................................................................. 52

,LECTURE 6 LOGISTIC REGRESSION............................................................................................................ 53

6.1 RECAP OF UPDATE RULE OF (S)GD ...................................................................................................................... 53
6.2 LOSS FUNCTION FOR CLASSIFICATION ................................................................................................................... 55
6.3 COST FUNCTION OF LOGISTIC REGRESSION ............................................................................................................ 63
6.4 SGD FOR THE LOSS FUNCTION ............................................................................................................................ 64
6.5 SUMMARY LINEAR REGRESSION VS. LOGISTIC REGRESSION ....................................................................................... 66
6.6 HOW TO CONTROL (OVER)FITTING? .................................................................................................................... 67

LECTURE 7 NEURAL NETS......................................................................................................................... 71

7.1 RECAP ........................................................................................................................................................... 71
7.2 THE BRAIN ...................................................................................................................................................... 73
7.3 FEED-FORWARD NEURAL NETWORK (A.K.A. MULTI-LAYER PERCEPTRON).................................................................. 74
7.4 NEURAL NETWORK PREDICTION.......................................................................................................................... 77
7.5 EX: REPRESENTING XOR .................................................................................................................................. 78
7.6 COST FUNCTIONS ............................................................................................................................................. 80
7.7 TRAINING THE NEURAL NETWORK ...................................................................................................................... 82
7.8 SUMMARY OF (ARTIFICIAL) NEURAL NETWORKS ..................................................................................................... 85
7.9 SPECIAL TYPES OF NEURAL NETWORKS ................................................................................................................ 86

,Lecture 1 Introduction


1.1 Machine Learning

Machine Learning (ML) is the study of computer algorithms that improve automatically through
experience. It involves becoming better at a task (T), based on some experience (E) with respect to some
performance measure (P).


1.1.1 Learning process

1) Find examples of labels/experiences.
2) Come up with a learning algorithm, which infers rules from examples (training set).
3) Applied the rules to new data.


1.1.2 Examples

- Filter email: If (A or B or C) and not D, then “spam”.
- Recognize handwritten numbers and letters.
- Recognize faces in photos.
- Determine whether text expresses positive, negative or no opinion.
- Guess a person’s age based on a sample of writing.
- Flag suspicious credit-card transactions.
- Recommend books and movies to users based on their own and others’ purchase history.
- Recognize and label mentions of people’s or organization names in text.

ML is not meant for random guessing, like predicting the number when rolling some dice. It studies
algorithms that learn from examples.

, 1.2 Types of learning problems

Type Input Response Example

Regression A (real) number predict person’s age, predict price of a stock,
predict student’s score on exam

Binary classification YES/NO answer (condition being there detect SPAM, predict polarity of product review:
or not there) positive vs negative

Multiclass One of a finite set of options detect species based on photo, classify newspaper
classification article as <politics> <sports> …

Multilabel A finite set of YES/NO answers assign songs to one or more genres (rock – pop –
classification metal, hip-hop – rap)

Ranking Object ordered according to relevance rank web pages in response to user query, predict
student’s preference for courses in a program

Sequence labeling a sequence of elements a corresponding sequence of labels label words in a sentence with their syntactic
(ex. words) category (noun – adverb – verb)

Sequence-to- a sequence of elements sequence of other elements (possibly translations (“My name is Penelope” → “Me
sequence modeling (ex. words) different length, possibly elements from llamo Penélope”), computer-generated subtitles
different sets)

Autonomous measurements from instructions for actuators (steering, self-driving car
behavior sensors (microphone, accelerator, brake …)
accelerometer …)

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
clairevanroey Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
119
Member since
8 year
Number of followers
96
Documents
32
Last sold
11 months ago

3.1

13 reviews

5
3
4
4
3
0
2
3
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions