100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting microbiology RUG

Rating
-
Sold
-
Pages
39
Uploaded on
07-06-2021
Written in
2020/2021

dit is een samenvatting van de lectures over microbiology.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 7, 2021
Number of pages
39
Written in
2020/2021
Type
Summary

Subjects

Content preview

Microbiology

Lecture 1:

A microbe is a living organism that can be seen by a microscope that range from millimeters
in size to 0.2 micrometers.

Link between infection and disease (bacteria):
1. The microbe is found in all cases of the disease but is absent from the healthy
individual.
2. The microbe is isolated from the diseased host and grown in pure culture.
3. When the microbe is introduced into a healthy, susceptible host, the host shows the
same disease.
4. The same strain of microbe is obtained from the newly diseased host. When cultured,
it shows the same characteristics as before.

Vaccines work against viruses, in that they utilize the virus infection mechanism to produce
the antibodies against them. – ineffective against live bacteria.
Antiseptics come in two forms: physical and chemical
- Physical antiseptics usually include heat (burner flame, autoclave)
- Chemical antiseptics are molecules kill not only bacteria, but also the host if ingested.
Antibiotics are chemicals that would kill the microbes but leave the host unharmed. Due to
host variability this has been adapted for killing >99.9% of microbes.

Supporting ecosystems
- Aerobic environments are abundant with oxygen
- Microaerophilic environments have reduced oxygen levels and may led to multiple
forms of metabolism.
 Capnophilic (CO2 loving) environments are a form of microaerophilic
environments.
- Anaerobic environments are lacking oxygen.
- Strict anaerobic environments are completely void of oxygen (oxygen is lethal).
- Within a growing biofilm, any or all of these environments can exist simultaneously.

If you don’t have chloroplast, you have an animal cell.

Three kingdom scheme
- Eukarya (eukaryotes) – multi-celled organisms
- Bacteria (common bacteria) – single celled organisms, of which proteobacteria
(mitochondria) and cyanobacteria (chloroplasts) were derived.
- Archaea – (rare bacteria) including thermophiles, sulfur oxidizers, that are not
susceptible to antibiotics.

The main difference between gram positive and gram negative is that the gram positive has
the peptidoglycan layer. It does exist in gram negative, but it is much thinner.

,To grow and multiply, a microbial cell must obtain nutrients faster than its competitors (or
share them for mutual advantage, like symbiotes with plants).
Most bacteria share these 3 traits:
- Thick, complex outer envelope (cell wall or membrane, with or without thick
peptidoglycan layer).
- Compact genome.
- Tightly coordinated functions.
In contrast:
- Archaea have unique membrane and envelope structures to allow survival in
extremes.
- Eukaryotic cells have extensive membranous (internal) organelles.

Cell fractionation
- It is possible to separate components of a cell based on their mass.
- Ultra-centrifugation techniques (high speed) are used to pellet heavier components,
while leaving the lighter components in suspension.
- After removing the heavier pellet, the centrifuge speed is increased, and a lighter
component is next pelleted. (repeated for all interesting components).
- Protein separation in gels (SDS-PAGE) works in a similar manner (diffusion, rather
than centrifugation).

Membrane components
- Membrane lipids (phospholipids) form a bilayer that separates water environments
of the internal cell and surrounding exterior environment.
- Membrane proteins:
 Provide structural support
 Detect environmental signals
 Secrete virulence factors and communication signals
 Function with ion transport and energy storage
- Thick peptidoglycan structure is a target for several antibiotics (against gram positive
bacteria).

Methods of transport across the membrane:
- Passive diffusion – small, uncharged molecules
- Osmosis – concentration of water balance (internal and external) known as osmotic
pressure.
- Membrane permeant weak acids/bases – cross in uncharged form.
- Transmembrane ion gradients – require transfer proteins to move across membrane
 Passive – move according to concentration gradient
 Active – move against concentration gradient and requires energy

Nutrient supplies limit growth
- Bacteria have a simple purpose: survive and growth
- In the absence of nutrients, bacteria go into survival mode
- In the abundance of nutrients, bacteria go into a replication mode
- Heterotrophy uses nutrients to produce CO2
- Autotrophy uses CO2 to produce nutrients

,Bacteria are grown in culture medium
- Pure cultures are bacterial suspensions derived from a single bacterial colony in a
liquid growth medium, grown beyond the exponential phase.
- After growth, pure cultures are placed on solid growth medium (agar plates) to
confirm a single colony characteristic (purity of culture).
- To ensure single colonies are visible for analysis, dilution streaking technique is used.

Choosing the proper medium
- Minimum defined medium provides the bare minimum to reproduce
- Complex medium provides many building blocks bacteria would have needed to
produce themselves (more varieties may grow)
- Selective medium limits growth of bacteria not wanted by the researcher (can
contain antibiotics)
- Differential medium provides visual cues that differ between colonies to allow for
visual identification.

Quantifying bacterial counts
- Under a microscope counts live and dead bacteria per unit area
- Dilution plating counts viable colonies, assumed to be from a single bacteria –
designated by colony forming units (CFU) per volume or per unit area
- Optical density (OD) should be used with a standard curve of that bacterial
suspension in the growth medium provided. McFarland standards are used as an
estimated concentration.
- Biochemical assays (quantify DNA, ATP, etc.) to then translate to counts.

A biofilm is a community of bacteria embedded in a matric of extracellular polymers
associated with a surface.

Lecture 2:

, The green line represents the linear rate constant.
If the environment conditions are favorable, then they will go in replication mode and when
they are unfavorable they go into survival mode.

Physical, chemical and biological control of microbes:
- Sterilization: all living cells, spores and viruses are destroyed on an object.
- Disinfection: killing or removal of disease producing organisms from inanimate
surfaces.
- Antisepsis: killing or removal of pathogens from living tissues.
- Sanitation: reducing the microbial population to safe levels (cleaning and disinfecting,
typical)
 Bacteriostatic – inhibits growth (number of viable cells remains near constant)
 Bactericidal – kill (number of viable cells reduced)
 Germicidal – kill pathogens, but not spores

Physical agents that kill microbes:
- High temperature and pressure (autoclave)
 Boiling water reaches 100 degrees
 With high pressure, autoclaves reach 121 degrees at 15 psi. 20 minutes under
these conditions are thought to kill all spores except those of some
thermophiles (but thermophiles are not pathogenic).
- Pasteurization (heating of product)
 Used in dairy – long enough to kill cause of Q fever, but not all.
- Cold – slow growth and preserves strains (ultra-low cold storage at -80 degrees).
- Filtration – microbes will not be able to pass through < 0.2 micrometer pores (but not
viruses.
- Irradiation – UV light exposure will damage bacterial DNA.

Chemical agents to kill microbes:
- The choice of chemical agent requires knowledge of factors:
 Presence of organic matter
$7.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jdop

Get to know the seller

Seller avatar
jdop Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
2
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions