100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Business Intelligence and Data Management full course

Rating
-
Sold
4
Pages
122
Uploaded on
29-04-2021
Written in
2020/2021

Summary of 122 pages for the course Business Intelligence and Data Management at UVT (Full course notes.)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 29, 2021
Number of pages
122
Written in
2020/2021
Type
Summary

Subjects

Content preview

BUSINESS INTELLIGENCE & DATA MANAGEMENT
Dr. Emiel Caron & Dr. Ekaterini Ioannou & Dr. Poonacha Medappa



TABLE OF CONTENTS

LECTURE 1: INTRODUCTION TO BI AND DATABASE SYSTEMS ........................................................................ 4

1. INTRODUCTION TO BUSINESS INTELLIGENCE ........................................................................................................... 4
1.1. Business Intelligence (BI) vs. Business Analytics (BA). ........................................................................ 4
1.2. Definition ............................................................................................................................................ 4
1.3. Business Intelligence architecture ...................................................................................................... 5
2. INTRODUCTION TO DATABASES ............................................................................................................................ 7
Text 1. Database systems: design, implementation, and management – Carlos Coronel, Steven Morris &
Peter Rob.......................................................................................................................................................... 7
2.1. Database systems ............................................................................................................................. 32
2.2. Relational databases ........................................................................................................................ 32
2.3. Trends in the database world ........................................................................................................... 33
3. READING: DATA WAREHOUSE DESIGN- MODERN PRINCIPLES AND METHODOLOGIES ................................................. 34

LECTURE 2: SQL & DATA WAREHOUSING ................................................................................................... 45

1. INTRODUCTION STRUCTURED QUERY LANGUAGE (SQL) ........................................................................................ 45
1.1. Data types ......................................................................................................................................... 45
1.2. Join types .......................................................................................................................................... 45
2. INTRODUCTION TO DATA WAREHOUSING............................................................................................................. 46
2.1. Why do we need a separate data warehouse? ................................................................................ 47
2.2. DW framework: components............................................................................................................ 47
2.3. DW framework: Architecture............................................................................................................ 50
2.4. Data warehouse architecture variants ............................................................................................. 51

LECTURE 3: OLAP BUSINESS DATABASES & BUSINESS DASHBOARDS ........................................................... 57

1. ETL (EXTRACTION, TRANSFORMATION, & LOAD) ................................................................................................. 57
1.1. Process steps ..................................................................................................................................... 57
1.2. Transformation ................................................................................................................................. 57
1.3. ETL tools ............................................................................................................................................ 59
2. OLAP BUSINESS DATABASES ............................................................................................................................. 60
2.1. Why OLAP? ....................................................................................................................................... 61
2.2. OLAP operators ................................................................................................................................. 62
2.3. Multi-dimentional modelling ............................................................................................................ 64
2.4. Central fact table .............................................................................................................................. 67
2.5. Dimension table ................................................................................................................................ 68
2.6. OLAP software vendors..................................................................................................................... 69
3. TECHNICAL OLAP ISSUES ................................................................................................................................. 70
3.1. Sparse fact table ............................................................................................................................... 70
3.2. History in the stars ............................................................................................................................ 71


1

, 4. BUSINESS DASHBOARDS ................................................................................................................................... 72
4.1. Two theoretical perspectives: ........................................................................................................... 72

LECTURE 4: DATA MINING INTRODUCTION ................................................................................................ 74

1. PYTHON REFRESHER ........................................................................................................................................ 74
2. DECISION MAKING WITH BIG DATA ..................................................................................................................... 75
3. DATA MINING METHODS ................................................................................................................................. 75
4. DATA ........................................................................................................................................................... 75
4.1. Data and types of variables .............................................................................................................. 76
4.2. Sources of data ................................................................................................................................. 77
5. DATA MINING PROCESS(ES)—OVERVIEW OF THE STEPS INVOLVED IN DATA MINING .................................................... 77
Step 1: Develop an understanding of the purpose of the data mining project ............................................. 77
Step 2: Obtain the dataset to be used in the analysis ................................................................................... 77
Step 3: Explore, clean, and preprocess the data ............................................................................................ 78
Step 4: Reduce the data dimension, if necessary........................................................................................... 78
Step 5: Determine the data mining task ........................................................................................................ 78
Step 6: Partition the data (for supervised tasks) ........................................................................................... 78
Step 7: Choose the data mining technique(s) ................................................................................................ 78
Step 8: Use algorithms to perform the task ................................................................................................... 78
Step 9: Interpret the results of the algorithms .............................................................................................. 78
Step 10: Deploy the model ............................................................................................................................. 79
5.1. SEMMA methodology ....................................................................................................................... 79
5.2. CRISP-DM .......................................................................................................................................... 79

LECTURE 5: REGRESSION MODELS ............................................................................................................. 81

1. DEFINITION: REGRESSION ANALYSIS .................................................................................................................... 82
2. LINEAR REGRESSION MODEL ............................................................................................................................ 82
3. VISUALIZATION............................................................................................................................................... 83
4. ORDINARY LEAST SQUARES (OLS) ..................................................................................................................... 83
5. MODEL USAGE AND POSSIBLE ISSUES .................................................................................................................. 84
5.1. Objectives for single/multiple regression ......................................................................................... 84
5.2. Issues................................................................................................................................................. 84

LECTURE 6: CLASSIFICATION...................................................................................................................... 85

1. WHAT IS CLASSIFICATION? ............................................................................................................................... 85
1.1. Classification vs. Clustering .............................................................................................................. 85
1.2. Classification process ........................................................................................................................ 85
1.3. Need for classification ...................................................................................................................... 86
1.4. Model induction and application ...................................................................................................... 86
1.5. Classification techniques .................................................................................................................. 87
2. NAÏVE BAYES FOR CLASSIFICATION ..................................................................................................................... 88
2.1. Naïve Bayes classifier........................................................................................................................ 88
2.2. Some concerns .................................................................................................................................. 90
2.3. Pros and cons .................................................................................................................................... 90

LECTURE 7: K NEAREST NEIGHBORS FOR CLASSIFICATION .......................................................................... 91

1. DETERMINING RECORD’S NEIGHBORS ................................................................................................................. 91
1.1. Euclidean Distance ............................................................................................................................ 91



2

, 1.2. Manhattan Distance ......................................................................................................................... 92
2. CHOOSING THE NUMBER OF NEIGHBORS, I.E., VALUE K .......................................................................................... 92
3. COMPUTING PREDICTION (FOR A NUMERICAL OUTCOME) ....................................................................................... 93

LECTURE 8: PERFORMANCE MEASURES ..................................................................................................... 95

1. EVALUATING PREDICTIVE PERFORMANCE (OF NUMERIC/CONTINUOUS PREDICTIONS) ................................................... 96
1.1. Prediction Accuracy measures .......................................................................................................... 96
1.2. Lift chart............................................................................................................................................ 97
2. JUDGING CLASSIFIER PERFORMANCE (CATEGORICAL VARIABLES EX. BIRDS) ................................................................ 98
2.1. Confusion matrix............................................................................................................................... 98
2.2. Accuracy (overall success rate) ......................................................................................................... 99
2.3. Receiver operating characteristic (ROC) ........................................................................................... 99
2.4. Cost Matrix (as response to the limitation of Accuracy) ................................................................ 100
2.5. Kappa statistic for multiclass prediction......................................................................................... 101
2.6. Precision and Recall ........................................................................................................................ 102
2.7. 𝑭𝟏-measure .................................................................................................................................... 103

LECTURE 9: DECISION TREES.................................................................................................................... 104

1. MAIN PROCESSING........................................................................................................................................ 104
1.1. Induction (with a Greedy Strategy)................................................................................................. 105
2. PROS AND CONS OF DECISION TREES ................................................................................................................. 109

LECTURE 10: ASSOCIATION RULES ........................................................................................................... 110

1. RULES ........................................................................................................................................................ 110
2. TWO-STAGE PROCESS.................................................................................................................................... 111
2.1. Generation of frequent itemsets → Apriory algorithm .................................................................. 111
2.2. Selecting the strong rules i.e., criteria for judging the strength of the rules.................................. 112
3. ALTERNATIVE DATA REPRESENTATION (TO SPEED UP EXECUTION) ........................................................................... 113

LECTURE 11: CLUSTERING ....................................................................................................................... 114

1. CLUSTER ANALYSIS ........................................................................................................................................ 114
1.1. Issues for clustering ........................................................................................................................ 114
2. REPRESENTATION & DISTANCE........................................................................................................................ 115
2.1. Distance .......................................................................................................................................... 115
3. TWO TYPES OF CLUSTERING ............................................................................................................................ 117
3.1. Hierarchical clustering .................................................................................................................... 117
3.2. Partitional Algorithms: k means ..................................................................................................... 120




3

, LECTURE 1: INTRODUCTION TO BI AND DATABASE SYSTEMS

1. INTRODUCTION TO BUSINESS INTELLIGENCE


Data Information Knowledge



Methods of BI:

1. Descriptive analytics: use data to understand past and present.
Retrospective
2. Diagnostic analytics: explain why something happened.

3. Predictive analytics: predict future behavior based on past
performance.
Prospective
4. Prescriptive analytics: make decisions or recommendations to
achieve the best performance.

Functions of BI: Marketing analytics, Sales analytics, HR analytics, Financial analytics, Supply chain
analytics, Accounting analytics ….



1.1. BUSINESS INTELLIGENCE (BI) VS. BUSINESS ANALYTICS (BA).

These terms are often fighting for dominance, distinguished by the following view:

- BI = data warehousing + descriptive analytics
- BA = predictive + prescriptive analytics

However, the prof thinks they are too similar to really be separated, as both are examples of a Decision
Support System (DSS).



1.2. DEFINITION

= Transforming data into meaningful information/knowledge to support business decision-
making. (general)
= BI is an umbrella term that combines the processes, technologies, and tools needed to
transform data into information, information into knowledge, and knowledge into plans that
drive profitable business action. (process view)
= BI is information and knowledge that enables business decision-making. (output view)




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
clairevanroey Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
119
Member since
8 year
Number of followers
96
Documents
32
Last sold
10 months ago

3.1

13 reviews

5
3
4
4
3
0
2
3
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions