Samenvatting SD-periode 2
Herhaling wisselwerking E.M. straling/fotonen straling met materie
Interactie van fotonen met elektronen
- Coherente verstrooiing
- Foto-elektrisch effect
- Compton effect
Interactie van fotonen met de kern
- Paar vorming
- Kern-foto effect
Herhaling indeling straling
Indeling A
- Niet ioniserende straling
o Energie te laag dus elektron gaat niet uit schil
- Ioniserende straling
o Als straling in staat is wanneer deze op materie valt om elektronen uit
schillen te schieten (positief geladen ion over)
Indeling B
- Fotonen straling (Elektromagnetische straling (e.m.))
o Radiogolven
o Microgolven
o Zichtbaarlicht
o UV-licht → overgang niet-ioniserend straling en ioniserende straling
o Rontgenstraling
o Mev-fotonenstraling
o Y-straling (gamma) → foton
- Deeltjesstraling (corpusculaire straling)
o Alfa → helium kern → 2 protonen en 2 neutronen
o Beta → elektronen → negatieve lading
o MeV → elektronen → negatief
o Neutronenstraling → neutronen
o Protonen-straling → protonen → positief
o Splijtingsfragmenten
Niet ioniserende deeltjes straling bestaat niet
Week 1 Theorie interactie deeltjes met materie
Voorbeelden geladen deeltjes = Alpha’s, beta’s, protonen, elektronen
Neutronen hebben geen lading maar valt wel onder deeltjes straling
Ioniserende straling = straling waarvan de aard en energie zodanig zijn dat bij interactie met
materie één of meer elektronen van hun atoom kunnen worden losgemaakt (ionisatie)
- Direct ioniserende straling = 𝛼−, 𝛽 − 𝑠𝑡𝑟𝑎𝑙𝑖𝑛𝑔, en protonenstraling, snelle
elektronen
o Straling die zelf (primair) op materie valt en zorgt voor de ionisatie
o Veel interacties per weglengte!
- Indirect ioniserende straling = neutronen, fotonen, 𝛾 − 𝑠𝑡𝑟𝑎𝑙𝑖𝑛𝑔, röntgenstraling→
ongeladen deeltjes
, o Bij een ionisatie komt een elektron vrij en dit elektron zorgt voor de meeste
ionisatie
o Weinig interacties per weglengte maar bij paar interacties wordt er energie
afgedragen aan direct ioniserende straling die veel interacties aangaan
𝛾 − 𝑠𝑡𝑟𝑎𝑙𝑖𝑛𝑔, röntgenstraling = interacties per weglengte laag → secundaire deeltje
(hoogenergetische elektronen) veroorzaken wel veel ionisaties per weglengte
Neutronenstraling = interacties per weglengte laag want zijn neutraal dus worden niet
aangetrokken en dus moeten ze toevallig tegen kern aanbotsen → secundaire deeltjes
(kernen en splijtingsframenten) veroorzaken wel veel ionisaties per weglengte
Elektromagnetische straling (fotonen-straling)
- Interactie met materie via:
o Botsing met de elektronen rond de kern
o Coulombveld van de kern
- Gevolg: energie overdracht via → afremmen NIET
o Coherente verstrooiing
o Foto-elektrisch effect
o Compton-effect
o Paarvorming
o Kern-foto-effect
- Resultaat: theoretisch oneindige reikwijdte → kan je niet uitrekenen tot 0
Geladen deeltjes straling (corpusculaire straling) → deze straling kan je afschermen
- Interactie met materie via:
o Botsingen met elektronen rond de kern
o Coulombveld van de kern
- Gevolg: afremmen (energie afgifte)
o Excitatie
▪ Geladen deeltje botst met schilelektron → elektron komt in een van
de buitenste schillen terecht → later valt elektron terug
▪ Gevolg: karakteristieke straling
o Ionisatie
▪ Geladen deeltje botst met schilelektron → elektron van atoom
losgemaakt
▪ Gevolg 1: een geladen atoom (ion) doordat er geen evenwicht is
tussen aantal protonen en elektronen
▪ Gevolg 2: karakteristieke straling door lege plek in elektronen schil
▪ Positief geladen deeltjes (a2+ en p+) kunnen ook ioniseren door
schilelektronen weg te zuigen
o Remstraling
▪ Elektron gaat richting atoom → elektron negatief geladen, atoomkern
positief geladen → Elektron verander van richting door de aantrekking
van de kern
▪ Gevolg: remstraling
▪ De energie van de remstraling is gelijk aan het verschil in
bewegingsenergie van elektronen
▪ Dit proces gebeurt alleen bij elektronen!!
Herhaling wisselwerking E.M. straling/fotonen straling met materie
Interactie van fotonen met elektronen
- Coherente verstrooiing
- Foto-elektrisch effect
- Compton effect
Interactie van fotonen met de kern
- Paar vorming
- Kern-foto effect
Herhaling indeling straling
Indeling A
- Niet ioniserende straling
o Energie te laag dus elektron gaat niet uit schil
- Ioniserende straling
o Als straling in staat is wanneer deze op materie valt om elektronen uit
schillen te schieten (positief geladen ion over)
Indeling B
- Fotonen straling (Elektromagnetische straling (e.m.))
o Radiogolven
o Microgolven
o Zichtbaarlicht
o UV-licht → overgang niet-ioniserend straling en ioniserende straling
o Rontgenstraling
o Mev-fotonenstraling
o Y-straling (gamma) → foton
- Deeltjesstraling (corpusculaire straling)
o Alfa → helium kern → 2 protonen en 2 neutronen
o Beta → elektronen → negatieve lading
o MeV → elektronen → negatief
o Neutronenstraling → neutronen
o Protonen-straling → protonen → positief
o Splijtingsfragmenten
Niet ioniserende deeltjes straling bestaat niet
Week 1 Theorie interactie deeltjes met materie
Voorbeelden geladen deeltjes = Alpha’s, beta’s, protonen, elektronen
Neutronen hebben geen lading maar valt wel onder deeltjes straling
Ioniserende straling = straling waarvan de aard en energie zodanig zijn dat bij interactie met
materie één of meer elektronen van hun atoom kunnen worden losgemaakt (ionisatie)
- Direct ioniserende straling = 𝛼−, 𝛽 − 𝑠𝑡𝑟𝑎𝑙𝑖𝑛𝑔, en protonenstraling, snelle
elektronen
o Straling die zelf (primair) op materie valt en zorgt voor de ionisatie
o Veel interacties per weglengte!
- Indirect ioniserende straling = neutronen, fotonen, 𝛾 − 𝑠𝑡𝑟𝑎𝑙𝑖𝑛𝑔, röntgenstraling→
ongeladen deeltjes
, o Bij een ionisatie komt een elektron vrij en dit elektron zorgt voor de meeste
ionisatie
o Weinig interacties per weglengte maar bij paar interacties wordt er energie
afgedragen aan direct ioniserende straling die veel interacties aangaan
𝛾 − 𝑠𝑡𝑟𝑎𝑙𝑖𝑛𝑔, röntgenstraling = interacties per weglengte laag → secundaire deeltje
(hoogenergetische elektronen) veroorzaken wel veel ionisaties per weglengte
Neutronenstraling = interacties per weglengte laag want zijn neutraal dus worden niet
aangetrokken en dus moeten ze toevallig tegen kern aanbotsen → secundaire deeltjes
(kernen en splijtingsframenten) veroorzaken wel veel ionisaties per weglengte
Elektromagnetische straling (fotonen-straling)
- Interactie met materie via:
o Botsing met de elektronen rond de kern
o Coulombveld van de kern
- Gevolg: energie overdracht via → afremmen NIET
o Coherente verstrooiing
o Foto-elektrisch effect
o Compton-effect
o Paarvorming
o Kern-foto-effect
- Resultaat: theoretisch oneindige reikwijdte → kan je niet uitrekenen tot 0
Geladen deeltjes straling (corpusculaire straling) → deze straling kan je afschermen
- Interactie met materie via:
o Botsingen met elektronen rond de kern
o Coulombveld van de kern
- Gevolg: afremmen (energie afgifte)
o Excitatie
▪ Geladen deeltje botst met schilelektron → elektron komt in een van
de buitenste schillen terecht → later valt elektron terug
▪ Gevolg: karakteristieke straling
o Ionisatie
▪ Geladen deeltje botst met schilelektron → elektron van atoom
losgemaakt
▪ Gevolg 1: een geladen atoom (ion) doordat er geen evenwicht is
tussen aantal protonen en elektronen
▪ Gevolg 2: karakteristieke straling door lege plek in elektronen schil
▪ Positief geladen deeltjes (a2+ en p+) kunnen ook ioniseren door
schilelektronen weg te zuigen
o Remstraling
▪ Elektron gaat richting atoom → elektron negatief geladen, atoomkern
positief geladen → Elektron verander van richting door de aantrekking
van de kern
▪ Gevolg: remstraling
▪ De energie van de remstraling is gelijk aan het verschil in
bewegingsenergie van elektronen
▪ Dit proces gebeurt alleen bij elektronen!!