100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary of knowledge clips of modules 0 - 8 FQD-31306 Predicting Food Quality

Rating
3.0
(1)
Sold
2
Pages
38
Uploaded on
22-04-2021
Written in
2020/2021

This document contains all information that was stated on the slides of the knowledge clips from modules 0 to 8

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 22, 2021
Number of pages
38
Written in
2020/2021
Type
Summary

Subjects

Content preview

FQD-31306 Predicting Food Quality
Marly Verest



FQD-31306 - Predicting Food
Quality
Module 0
Predicting food quality
Quality = satisfying the expectation of the consumer

Q=f(Qint, Qext)  focus in this course is on intrinsic quality attributes

Trained sensory panels = used to decompose down components of quality perception into sensory
attributes

Consumer panels = used to rate preference, choice, and liking

Why would we want to predict food quality?

- Fast changing consumer demands
o Safe, healthy, attractive, sustainable, functional
- Continuous product development
o Raw material change
- Increasing demands on food quality
o Consumer wishes, food laws
- Efficient product and process design
o Saving of time, money and resources

Food Quality attributes examples

- Colour
o Components that absorb certain wavelengths
- Smell
o Components that interact with receptors in the nose
- Taste
o Components that interact with receptors on the tongue
- Texture
o Gel strength, polymer networks, particle networks
- Safety
o Absence of pathogenic micro-organisms / toxic chemicals
- Convenience
o Packaging
o Ready to eat
- Shelf-life
o Microbial spoilage, diffusion
- Nutritional value, healthiness

(measurable) Quality Performance Indicators

e.g. colour: carotenoid content or nutritional value: lysine content


1

,FQD-31306 Predicting Food Quality
Marly Verest




2

, FQD-31306 Predicting Food Quality
Marly Verest


Classification in terms of food science:

- Chemical aspects
o Maillard reaction, oxidation
- Biochemical aspects
o Enzymatic browning, proteolysis, lipolysis, hydrolysis,…
- Physical aspects
o Rheology, fracture mechanics, coalescence, coagulation, diffusion, phase change, …
- Microbiological aspects
o Growth of micro-organisms, inactivation

Food Quality Prediction

- Translation of consumer perceptions into measurable and manageable quality attributes
- Identifying most relevant food quality attributes
- Studying of processes underlying the behaviour of food quality attributes
- Predicting the behaviour of food quality attributes

Changes take place in foods, since foods are not static

- What changes are possible  thermodynamics
- How fast do changes occur  kinetics
- The possible changes but especially their rates affect food quality

Quality Analysis Critical Control Points (QACCP)

How to get grip on the quality changes

- Chain analysis of what actors are doing
- Identifying the process that affect quality
- Identifying the factors that influence the processes
- Identifying what is happening in the food
- Turn the analysis results into a model

Prediction: being able to tell something sensible about future events

Events: results of chemical, biochemical, physical, microbiological reactions in the food

Sensible: outcome should be in the right order of magnitude but some variation is acceptable




3

, FQD-31306 Predicting Food Quality
Marly Verest



Module 1
Structure of mathematical model
Mathematical model = reflects quantitatively a dependence between variables

- Input: independent variable (controllable) = x-value
- Output: dependent (response / not controllable) variable = y-value

Quantitatively = how much does y change when x changes

Parameters = a and b  determine the output of the model (y-value)

η = f (θ,ξ)

Finding mathematical models
How to find a mathematical model?

- Theory may predict a certain model (almost never possible, since foods are complex systems)
- Based on experimental observations
- Studying the data pattern (what pattern can be seen)
- Trying to find a mathematical fit without any theoretical background

Overfitting = to many parameters compared to the amount of datapoints

Mathematical models that are relevant for food science problems usually describe changes in time
and/or space:

- Algebraic equations e.g. Stokes’ law, Growth model for micro-organisms
- Differential equations e.g. First-order model
- Partial differential equations (heating of food in a can, increasing temperature, but different
temperatures inside the can)

Models and Errors
Deterministic models = provide an outcome that seems to be without uncertainty BUT: parameters in
models are estimated from experiments that contain unexplainable variation, hence, parameter
estimates are uncertain

Stochastic or probabilistic models = provide range of output values, which reflects the uncertainty of
the prediction  same input does not always give the same output but shows variation

η = f (θ,ξ) + ε (error term)

Two sources contributing to total uncertainty  separation of the two sources is of importance so
that appropriate measures can be taken

- Variability
o Inherent variation in the system under study
o Cannot be reduced for a given system
- Uncertainty
o Reflects our state of knowledge about the system under study
o Can be reduced by better and more measurements



4

Reviews from verified buyers

Showing all reviews
2 year ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
marlyverest Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
13
Member since
7 year
Number of followers
12
Documents
23
Last sold
2 year ago

2.5

2 reviews

5
0
4
0
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions