100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Uitgebreide lesnotities Toegepaste Biostatistiek

Rating
-
Sold
3
Pages
96
Uploaded on
07-04-2021
Written in
2020/2021

Dit document bevat de notities die ik gemaakt heb tijdens de les van Professor Vercauteren, aangezien ik de lesopnames bekeek staan alle belangrijke dingen erin die hij tijdens de les heeft verteld. Het document kan wat chaotisch overkomen, maar als je dit naast de slides houdt (&de slides zullen waarschijnlijk niet veranderen voor de volgende academiejaren) dan is alles heel goed te volgen en dit zal ervoor zorgen dat zelfs een groentje in Biostatistiek makkelijk hoge punten haalt.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 7, 2021
Number of pages
96
Written in
2020/2021
Type
Class notes
Professor(s)
Vercauteren jurgen
Contains
All classes

Subjects

Content preview

TOEGEPASTE BIOSTATISTIEK

LES 1

Dia 2

4 hoofdstukken bekijken

HF 14 person time data, opvolgen in de tijd, hoe analyseren



Dia 3

HF 11 beginnen we, we gaan eig kijken of er variabelen met elkaar gecorreleerd zijn



Dia 4

Zijn de variabelen gecorreleerd, correlatiecoefficient berekenen tussn 2 variabelen? Welke vd 2
beinvloed welke andere, wat is oorzaak? Wat is gevolg?

Correlatie; is er correlatie, geen uitspraak over wat veroorzaakt wat

Regressie; wat zijn de !re variabelen die andere beinvloeden (predictoren)

Simple lineair regression, 1 x en 1 y variable, dus 1 predictor variabele en 1 respons variabele

Bij multiple meerdere predictoren voor ene y , multiple linear regression

Beperken tot lineaire regressie:

X variabele nooit in moeilijke functies zetten, nooit in exponent, altijd lineair patroon

Simpele lineaire (te maken met een rechte) regressie; dus altijd een rechte met rico en intercept ,
fitten doorheen punten

3. meer dan 1 veranderlijke, niet meer spreken over rechte, mss over een vlak, meer dan 2, niet meer
echt k voorstellen in 3D ruimte, maar nog steeds over lineaire regressie spreken, omdat alle x
variabelen op een lineaire manier in verband w gebracht met y variabele, niet logaritmisch enz, x met
rico ervoor

X met rico ervoor, zo werken we

X variable, predictor variable

Continu (veel mogelijk uitkomsten bv bloeddruk) of categorisch (man of vrouw)

Meestal uitkomst variabele wel continue, predictor variabele kan continu of categorisch zijn



Dia 5

Eerste vb

Ook 11.2 uit hb

Voobeeld die we veel gn gebruiken


1

,Obv hormoonniveau (conc) van vrouw, schatten dat geboortegewicht kind te laag zal zijn

Ingrijpen voor vrouw bevalt, extra laten rusten of medicatie geven, bevalling uitstellen zodat baby
meer gewicht

31 vrouwen worden bekeken, estriol bekijken

Geboortegewicht in centigram dus x100 gewicht in gram, 2,5kg eerse baby

Telkens 2 meetwaarden bij 1 dezelfde persoon

Scatterplot van maken



Dia 6

Punten weergevne in x y diagram

X as estriol, varaibele die predictor is, die het andere veroorzaakt op x as

Variabele die veroorzaakt w komt op de y-as

Beste rechte proberen te fitten , door die punten, met statistiek, met lineaire regressie

Variatie moet zo klein mogelijk zijn , rechte die het meest aansluit bij die punten

Afwijkingen zo klein mogelijk houden

Schatting bekomen v intercept en slope ; bedeoling v lineaire regressie

Intercept: plaats waar y-as snijden , hoogte door de y as, hier zie je dat niet zo goed, omdat men met
onderbrekingen gewerkt heeft

Slope: rico, hellingsgraad, hoe stijl rechte is , 0,608 hier

Hoe berekenen we die alfa en beta

X onafhankelijk en y afhankelijke variabele

Y hangt af vd x



Dia 7

In statistiek werken we met modellen, we zien, proefondervindelijk, dat het goed of slecht is (trial
and error)

Model komt tot stand door veelvuldig de zaken toe te passen op gegevens

Besluiten die we trekken mogen we pas trekken wnnr aan bep vwn voldaan is

Vb t-test, normaliteit moesten we nagaan (2 groepen gegevens vergelijken)

Hier bij lineaire regressie ook vwde nagaan , ook hypothese nagaan , foutenterm!

Model maakt een fout van dia 6 (uitleg over hormoonniveau 12, 1 putnje staat er, baby met iets
meer dan 2,6 kg, rechte zegt dat gewicht 2,8 moestz ijn, maar dat was het niet, model, rechte maakt
een fout), de e op deze slide is dat, de foutenterm, error


2

,Veronderstelling nagaan, kijken of het klopt en enkel dan besluiten trekken (via aparte test nakijken,
enkel als dat klopt mogen we verder gaan)

E foutenterm moet normaal verdeeld zijn etc zie volgende sldie vanboven= veronderstelling die we
maken



Dia 8

Covariate is je predictor

Voor elke waarde van je x kan je meerdere punten hebben

Cfr ene vrouw van 12 estriol, nog meerdere vrouwen k dat hormoonniveau h, meerdere vrouwen
bevallen, meerdere geboortegewichten

Rode lijn is regressie lijn , die we moeten berekenen

Rechte geeft aan, waar die snijdt, dat is het gewicht dat het model zegt dat het zou moeten zijn

In veel gevallen maak je een fout , je zit er vaak wat rond

Blauwe curve als de kansverdeling van die zwarte punten bekijken

We willen dat de meeste van die zwarte punten in de buurt zitten van dat rode snijpunt , er kunnen
afwijkingen zijn, maar hopen dat die evenveel voorkomen aan rechter als linkerkant 

We willen dat er een normale verdeling verschijnt, als je je blad 90 graden zou draaien (blauwe curve
stelt normale curve voor)

Model overschat het gewicht evenveel als onderschatten , normal distributed van die foutentermen

Gem moet nul zijn 

We hopen dat die zwarte punten zo dicht mogelijk bij dat snijpunt liggen (want in snijpunt is er geen
fout, gem zal nul zijn, maar e ris altijd spreiding)

Spreiding is sigma kwadraat, kwadraat van de standaarddev, variance

Constant variance!! 

Blauwe curves allemaal even breed getekend , het mag niet dat voor kleine waarden v x kleinere
spreiding en vcoor grote x grotere spreiding, mag niet zijn, in dat geval zou blauwe verdelingscurve
breder zijn aan R kant dan aan linker kant, dat mag niet, als dat zo is, niet dit simpel model volgen

Je moet de normaliteit nagaan van de residues ofs , dus nagaan of er normaliteit is van je
foutenterm, van je residius = foutentermen , moet normaal verdeeld zijn boven gem nul (dus top van
die normaal verdeling meot boven nul zitten) en evenveels preiding links, rechts, moet symmetrisch
zijn ,d us normaliteit van de residues moet je nagaan!!! Dus niet normaliteit van x of ynagaan, wel
van de residues, meestal wel zo als 

X en y normaal verdeeld dan is e da ook, de foutentermen , niet noodzakelijk

Absolute voorwaarde

Komt later nog



3

, Dia 9

Normaal verdeling, Gaussian , komt voor bij veel metingen, waarden h dan een gemiddelde en is er
evenveel spreiding langs linker en rechterkant, dat is typisch, filmpje tonen

Galton’s board ; er vallen ballen uit een buis, valt op plankje, balletje kan links of rechts gaan, als
genoeg balletjes laten vallen, ongeveer evenveel L als R vallen, wet van grote aantallen die geldt,
verder kijken: alle balletjes komen terug samen en vallen ze weer naar beneden, ze vallen op pinnen,
weer L of R kiezen, allemaal mooi in het midden laten vallen, meeste balletjes zullen in middelste
terechtkomen, geneog laten vallen, evenveel L als R komen er, bernoulli verdeling zit hier achter, 2
keuzes altijd , veel na elkaar dan krijg je een binomiaal verdeling, veel fenomenen in den atuur
gedragen zich volgens normale drijfveer met afwijkingen in ene en andere richting die even groot zijn



Dia 10

Spreiding, blauwe curves van eerder

Je hoopt dat er zo weinig mogelijk spreiding is, goeie regressie dan

Bovenste, perfecte fit , geen spreiding, perfecte regressie, meestal zoals het 2 de, rechte zo goed
mogelijk proberen te fitten



Dia 11

Hellingsgraad, pos stijgend, neg dalend, nul voor quasi recht , rico

Verschillende situaties overlopen (hartritme daalt vanaf baby tot ouder worden)

Beta is de slope

Weinig correlatie op die 2, vanonder



Dia 12

Bedoeling is om vgl vd rechte te achterhalen , op te stellen

Hoe kom je aan die berekende waarde?

Op basis van je gegevens

31 vrouwen , estriol level als geboorte gewicht hebben

31 koppels van metingen, zo intercept en slope bepalen

Hoe?

Method of least squares (minste kwadraten)

De fouten gaan kwadrateren, optellen en eisen dat de som vd gekwadrateerde fouten zo klein
mogelijk is

Punt is getoond 



4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
anoniemstuviaverkoop Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
70
Member since
4 year
Number of followers
40
Documents
0
Last sold
2 months ago

2.8

4 reviews

5
0
4
2
3
0
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions