100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary AQA A-Level Chemistry 1.6 Equilibria

Rating
-
Sold
1
Pages
5
Uploaded on
21-03-2021
Written in
2020/2021

These are detailed Revision Notes of topic 1.6 of AQA A-Level Chemistry (Equilibria). They were written by me using a combination of the textbook and class notes. I will also be uploading the other topics and creating bundles. Topics Included: - The idea of equilibrium - Changing the conditions of an equilibrium reaction - Equilibrium reactions in industry - The equilibrium constant - Calculations using equilibrium constant expressions - The effect of changing conditions on equilibria

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Study Level
Examinator
Subject
Unit

Document information

Summarized whole book?
No
Which chapters are summarized?
Chapter 6 - equilibria
Uploaded on
March 21, 2021
Number of pages
5
Written in
2020/2021
Type
Summary

Subjects

Content preview

Equilibria
6.1 The Idea of Equilibrium 6.1 the idea of equilibrium
- A dynamic equilibrium is in which both the 6.2 changing the conditions of an equilibrium reaction
forwards and backwards reactions occur at
6.3 equilibrium reactions in industry
the same time.
- They occur in a closed system – no products, 6.4 the equilibrium constant
reactants or energy can get in or out. 6.5 calculations using equilibrium constant expressions
- The amount of products and reactants does
not change. 6.6 the effect of changing conditions on equilibria
- An equilibrium is a state of balanced change.
- Equilibrium can be approached from either direction, and the final equilibrium position will always be the
same.
- When equilibrium is reached density, concentration, colour and pressure do not change with time.

6.2 Changing the Conditions of an Equilibrium
- It is possible to change the proportion of reactants to products in an equilibrium mixture by changing
the position of the equilibrium.
o If the proportion of products is increased, the equilibrium moves to the right.
o If the proportion of reactants is increased, the equilibrium moves to the left.
- Le Chatelier’s Principle:
o If a system at equilibrium is disturbed, the equilibrium moves in the direction that tends to
reduce the disturbance.
- If any factor affecting the equilibrium changes the position of equilibrium will shift to minimise the
change.
- The factors that affect equilibria also affect the rate of a reaction.
Concentration:
- Increasing a concentration will push the equilibrium away from the increased concentration. E.g.,
increasing the concentration of reactants will push towards the products side.
- In terms of rates, increasing the concentration of a reactant increases the rate of the forward
reaction. This makes the forward reaction faster than the backward one. This means the products will
increase until the rates are balanced again.
Pressure:
- This change only affects gases.
- Increasing pressure pushes the equilibrium to the side with the fewest moles of gas (based on the
balanced equation).
o E.g., 2NO2(g) ⇌ N2O4(g)
o Increasing pressure will push the equilibrium towards N2O4(g).
- Increasing the pressure speeds up the rates of both reactions but it speeds up the reaction with the
most moles of gas more.
Temperature:
- Increasing temperature follows the endothermic reaction.
- You will need to be told which direction is endothermic or exothermic. (a negative number means it is an
exothermic reaction)
- If the forward reaction is endothermic then a higher temperature pushes the equilibrium to the
right/products side.
- If the forward reaction is exothermic then a higher temperature pushes the equilibrium to the
left/reactants side.
Catalyst:
- A catalyst does not change the position of an equilibrium.
- It makes both the forwards and backwards reactions faster.

, - By using a catalyst, it means a lower temperature can be used for a reaction, not only does this save
money but if the forward reaction is exothermic then it will increase the yield of the products.

6.3 Equilibrium Reactions in Industry
- Many industrial processes involve reversible reactions.
- Le Chatelier’s principle can be used to choose the best conditions. The conditions that give the highest
yield may not be used. A compromise is often needed balancing out yield, rate of reaction, as well as the
costs of high temperatures and pressures. Safety is also a consideration.
Ammonia:
- 80% of ammonia is used to make fertilisers such as ammonium nitrate, ammonium sulfate and urea.
- 20% is used to make dyes, explosives, plastics, and synthetic fibres like nylon.
The Haber Process:
- Almost all ammonia is made by the Haber Process.
- N2(g) + 3H2(g) ⇌ 2NH3(g) ∆H𝜃 = -92kJmol-1
- A ratio of 1:3 N2 to H2 is used.
- The N2 comes from the air, and H2 comes from natural gas ~ CH4(g) + H2O(g) à CO(g) + 3H2(g)
- The conditions are: 200 atmosphere pressure (20,000kPa), 400oC, Fe catalyst
- Ammonia is cooled and separated out.
- To get the maximum yield of NH3, a low temperature and high pressure are needed.
- High pressure will push the equilibrium to the side with the fewest moles of gas. Low temperatures will
favour the exothermic reaction (forward). At low temperatures the rate is very slow.
- It is better to get a lower yield faster so the temperature of 400oC is used as a compromise. Higher
pressure would be too costly and have safety issues so 200 atm is used as a compromise.
- A catalysts is used to speed up the reaction. This means a lower temperature can be used which will
give a better yield.
- Due to the continuous flow of N2/H2 over the catalyst the reaction doesn’t actually reach equilibrium.
- The ammonia is removed by cooling, this helps to push the equilibrium to the NH3 side.
- Unreacted N2/H2 are then fed back into the reactor.
Ethanol:
- Ethanol is made by the hydration of ethene. The reaction is reversible.
- It is sped up by a catalyst of phosphoric acid absorbed on silica.
- H2C=CH2(g) + H2O(g) ⇌ CH2CH2OH(g) ∆H𝜃 = -46kJmol-1
- High pressure tends to cause the ethene to polymerise, it also increases the cost of building the plant
and the energy to run it. Low temperatures will reduce the rate of reaction and therefore how quickly
equilibrium is reached, although this is compensated for by the catalyst. Too much steam dilutes the
catalyst.
- 570K and 6500kPa are used, the unreacted ethene is separated and recycled over the catalyst again
and again.
Methanol:
- Methanol is used as a chemical feedstock (starting material to make other chemicals). It is also used to
make plastics or as motor fuel.
- CO(g) + 2H2(g) ⇌ CH3OH(g) ∆H𝜃 = -91kJmol-1
- It uses a copper catalyst
- The highest yield will be at low temperature and high pressure, but compromise is used and so 500K and
10,000kPa are actually used in practice.

6.4 The Equilibrium Constant
- For any reaction that reaches equilibrium we can write the equation in the form:
$4.10
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
emilysarahjudge Chelmsford County High School for Girls
Follow You need to be logged in order to follow users or courses
Sold
1509
Member since
5 year
Number of followers
786
Documents
131
Last sold
1 week ago
GCSE and A Level Notes

I sell notes for the following subjects: AQA GCSE Chemistry AQA GCSE Biology AQA GCSE Physics AQA GCSE History AQA A-Level Chemistry AQA A-Level Psychology OCR A-Level Biology

4.5

131 reviews

5
96
4
23
3
2
2
2
1
8

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions