100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary ARMS - General part Grasple

Rating
-
Sold
-
Pages
59
Uploaded on
21-03-2021
Written in
2020/2021

Summary of Grasple parts, including additional explanations about the different types of analysis and related research questions.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Benodigde hoofdstukken uu
Uploaded on
March 21, 2021
Number of pages
59
Written in
2020/2021
Type
Summary

Subjects

Content preview

M. Medema
Advanced Research Methods and Statistics for Psychology
General part 2020-2021
SPSS Skills Exam - Grasple Lessons


Refresh - Linear Regression

Simple Linear Regression - Correlation
Simple linear regression​ means a model with only 1 independent variable (predictor).


The relationship between these 2 variables =
Strong Negative Linear Relationship




It can sometimes be difficult to see the strength of a relationship only by eye. Therefore, you have a
standardized number to assess the strength of a linear relationship, called the ​correlation coefficient,
also called ​Pearson’s R​.
● An absolute value of 1 indicates maximum strength of a relation between two variables
● A value of 0 indicates no linear relation between the two variables




The correlation is a standardized measure, and multiple strengths of relationships can be compared
because of that. However, a low correlation or a correlation of 0 does not mean that there is no relation
between the two variables. The relationship can also be non-linear.

The correlation does ​not​ mean that the movement in 1 variable ​causes​ the other variable to move as
well. A correlation describes the ​strength​ of the linear relationship, not the causal effects of the
variables.

A variable has to be measured at ​interval/ratio level​, otherwise it cannot be used to calculate
correlations.

,When you want to investigate whether there are relationships between different variables, you can first
draw a ​scatter plot​, this provides you with valuable information about the strength and the direction of
the relationship.

If you want to compare correlations, the best option is to calculate Pearson’s R, because it is always
between -1 and 1, so that makes it easy to compare the correlations.



Pearson’s R will not give a good value for the strength of this combination of
variables, because it is ​non-linear​.




If two variables are correlated this means that a change in one of the variables will also mean a change
in the other variable. Whether one variable is the cause of the change in the other variable cannot be
concluded based on a correlation. To check this, you would need to set up an experiment. An
experiment is required to establish that there is a cause-effect relationship because this way other
explanations can be ruled out.

If 2 variables are correlated, this means that changes in 1 variable vary along
with changes in the other variable.

In essence, linear regression boils down to summarising a bunch of data by
drawing a straight line through them. The straight line is used to predict the
value of one variable based on the value of the other variable.

Note that, although the line in the second plot is the best fitting linear line through these data, it does
not represent the relation between the 2 variables very well (a straight line is not able to capture the
non-linear relation that we observe).

The minimal measurement level required for a linear regression is interval (quantitative variables)

Regression equation
If you want to calculate the predicted value, you need the ​regression equation​. The first thing you
need to calculate is the ​slope​ of the line.
Y/X = Slope

So this is how we should interpret the slope:
An increase in X by one unit results in an increase or decrease in Y of how
many units?
Example: if a person ages 1 extra year, their blood pressure rises on
average by 0.25 ps.

,Intercept
After calculating the slope, you have to calculate the ​intercept​, this is the point where the regression
line crosses the y-axis. This way you know where to place the beginning of the line on the y-axis.

Now that we know the line's two essential components, we can use these to make predictions:
Y-value = intercept + slope 𝘅 X-value

Mathematical formula=
ŷ = b​0 +
​ b​1​x


1. Calculate slope
2. Calculate the intercept


In this plot, you see 3 black dots representing 3 persons scoring the
same on x. Are the observed and predicted y values also the same for
these 3 persons?
The predicted Y values are the same, but the observed Y values are
different.

The predicted value is the corresponding y-value on the regression
line (in the graph called expected value) and this is the same for all
people with the same score on x. The observed values for y are not on
the regression line and differ for the 3 persons (3 dots with different
y-values).


The distance between the true y value and the predicted value ŷ is called the
error​ or ​residual​.
Y - ŷ = error




Sometimes there might be a problem; the positive and negative errors can cancel each other. This
makes the sum of all errors 0.

When we square the errors, they will always be positive and they do not cancel each other. This way
we can look for the line that will result in ​the smallest possible sum of squared errors​.
This method is called the ​least squares method​. This method is used to ​estimate the parameters of
the linear regression model.​ With this method we can find a linear regression model which fits the data
best.

, To reduce the sum of squared errors Σ (y-ŷ)² to a minimum, you have the following formula, which
determines the ​slope of the line​ with the smallest sum of squared errors:
σy
b​1​ = r 𝘅
σx
So the slope equals the correlation coefficient (pearson's r) times the standard deviation of y divided by
the standard deviation of x.

R-squared
Goodness of fit ​= R² (R-squared)

The R² determines the proportion of the variance of the dependent variable that is ‘explained’ by the
predictor variable(s). The R² is a proportion between 0 and 1.

So as an example: R² is 0.56, this means 56% of the variance of X (dependent) is explained by Y
(independent).

If the R² is very small, this does ​not​ mean that there is no meaningful relationship between the
variables, the relationship could still be practically relevant, even though it does not explain a large
amount of the variance.

If the R² is very large, this does ​not​ mean that the model is useful for predicting new observations. A
very large R² could be due to the sample, and might not predict well in a different sample.
Ŷ = b0 + (b1 * X 1 )

b​0 ​ = Estimated intercept
b​1​ = Estimated slope
X​1​ = Score independent variable (predictor)

If there are 2 independent variables, the formula is:
Ŷ = b0 + (b1 * X 1 ) + (b2 * X 2 )

So if you want to calculate the residual for a participant:
Y − (b0 + (b1 * X 1 ) + (b2 * X 2 ))

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
madeliefmedema Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
65
Member since
7 year
Number of followers
48
Documents
10
Last sold
1 year ago

3.7

13 reviews

5
3
4
6
3
2
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions