100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Student Solutions Manual Single Variable Calculus Roger Lipsett William L. Briggs Mark 2025/ 2026

Rating
-
Sold
-
Pages
729
Grade
A+
Uploaded on
21-01-2026
Written in
2025/2026

Comprehensive Student Solutions Manual Single Variable Calculus Roger Lipsett William L. Briggs Mark 2025/ 2026 with solution, designed to help students master single-variable calculus concepts, accurately solve exercises, reinforce understanding of derivatives, integrals, and limits, and excel in exams through step-by-step answers and detailed explanations.

Show more Read less
Institution
CALCULUS EARLY TRANSCENDENTALS
Course
CALCULUS EARLY TRANSCENDENTALS











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
CALCULUS EARLY TRANSCENDENTALS
Course
CALCULUS EARLY TRANSCENDENTALS

Document information

Uploaded on
January 21, 2026
Number of pages
729
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

2026 ? Focused
Student
on Page
Solutions
1 of 729
Manual, Single Variable for Calculus Roger Lipsett,William L. Briggs,Mark Woodard,Lyle.
| CompleteCochran,Bill
Questions & L. Answers
Briggs, | A+ Rated




INSTRUCTOR’S
SOLUTIONS MANUAL
SINGLE VARIABLE
MARK WOODARD
Furman University



C ALCULUS
E ARLY T RANSCENDENTALS

William Briggs
University of Colorado, Denver


Lyle Cochran
Whitworth University


With the assistance of

Bernard Gillett
University of Colorado, Boulder




Student Solutions Manual, Single Variable for Calculus Roger Lipsett,William
Page 1L.ofBriggs,Mark
729 Woodard,Lyle. Cochran,Bill
| Complete L.Questions
Briggs,.pdf& Answers | A+ Rated

,2026 ? Focused
Student
on Page
Solutions
2 of 729
Manual, Single Variable for Calculus Roger Lipsett,William L. Briggs,Mark Woodard,Lyle.
| CompleteCochran,Bill
Questions & L. Answers
Briggs, | A+ Rated




The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Addison-Wesley from electronic files supplied by the author.

Copyright © 2011 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-321-66408-2
ISBN-10: 0-321-66408-6

1 2 3 4 5 6 OPM 14 13 12 11 10




Student Solutions Manual, Single Variable for Calculus Roger Lipsett,William
Page 2L.ofBriggs,Mark
729 Woodard,Lyle. Cochran,Bill
| Complete L.Questions
Briggs,.pdf& Answers | A+ Rated

,2026 ? Focused
Student
on Page
Solutions
3 of 729
Manual, Single Variable for Calculus Roger Lipsett,William L. Briggs,Mark Woodard,Lyle.
| CompleteCochran,Bill
Questions & L. Answers
Briggs, | A+ Rated




Contents

1 3
1.1 Review of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Representing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Inverse, Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Trigonometric Functions and Their Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Chapter One Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 55
2.1 The Idea of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Definition of a Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3 Techniques of Computing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5 Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.6 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.7 Precise Definitions of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.8 Chapter Two Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 115
3.1 Introducing the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2 Rules of Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.3 The Product and Quotient Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.4 Derivatives of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.5 Derivatives as Rates of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.6 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.7 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.8 Derivatives of Logarithmic and Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 184
3.9 Derivatives of Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.10 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.11 Chapter Three Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4 213
4.1 Maxima and Minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.2 What Derivatives Tell Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.3 Graphing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.4 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
4.5 Linear Approximation and Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
4.6 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
4.7 L’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.8 Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
4.9 Chapter Four Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

1

Student Solutions Manual, Single Variable for Calculus Roger Lipsett,William
Page 3L.ofBriggs,Mark
729 Woodard,Lyle. Cochran,Bill
| Complete L.Questions
Briggs,.pdf& Answers | A+ Rated

, 2026 ? Focused
Student
on Page
Solutions
4 of 729
Manual, Single Variable for Calculus Roger Lipsett,William L. Briggs,Mark Woodard,Lyle.
| CompleteCochran,Bill
Questions & L. Answers
Briggs, | A+ Rated


2 CONTENTS


5 331
5.1 Approximating Areas under Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
5.2 Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
5.3 Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
5.4 Working with Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
5.5 Substitution Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
5.6 Chapter Five Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

6 397
6.1 Velocity and Net Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
6.2 Regions Between Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
6.3 Volume by Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
6.4 Volume by Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
6.5 Length of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
6.6 Physical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
6.7 Logarithmic and Exponential Functions Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 444
6.8 Exponential Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
6.9 Chapter Six Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

7 461
7.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
7.2 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
7.3 Trigonometric Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
7.4 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
7.5 Other Integration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
7.6 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
7.7 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
7.8 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
7.9 Chapter Seven Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

8 549
8.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
8.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
8.3 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
8.4 The Divergence and Integral Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
8.5 The Ratio, Root, and Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
8.6 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
8.7 Chapter Eight Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

9 599
9.1 Approximating Functions With Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
9.2 Properties of Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
9.3 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
9.4 Working with Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
9.5 Chapter Nine Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

10 645
10.1 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
10.2 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
10.3 Calculus in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
10.4 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
10.5 Chapter Ten Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711




c 2011 Pearson Education, Inc. Publishing as Addison-Wesley.
Copyright 

Student Solutions Manual, Single Variable for Calculus Roger Lipsett,William
Page 4L.ofBriggs,Mark
729 Woodard,Lyle. Cochran,Bill
| Complete L.Questions
Briggs,.pdf& Answers | A+ Rated

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
jhdavisoedu09 Boston City Campus and Business College
View profile
Follow You need to be logged in order to follow users or courses
Sold
2309
Member since
1 year
Number of followers
4
Documents
439
Last sold
16 hours ago

4.8

158 reviews

5
140
4
11
3
3
2
0
1
4

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions