100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

A First Course in the Finite Element Method, Enhanced (6th Edition, Daryl L. Logan) — Complete Solutions & Answer Guide (Chapters 1–16)

Rating
-
Sold
-
Pages
646
Grade
A+
Uploaded on
21-01-2026
Written in
2025/2026

A First Course in the Finite Element Method, Enhanced (6th Edition, Daryl L. Logan) — Complete Solutions & Answer Guide (Chapters 1–16).. Chapter 1. Introduction, Chapter 2. Introduction to the Stiffness (Displacement) Method, Chapter 3. Development of Truss Equations, Chapter 4. Development of Beam Equations, Chapter 5. Frame and Grid Equations, Chapter 6. Development of the Plane Stress and Plane Strain Stiffness Equations, Chapter 7. Practical Considerations in Modeling; Interpreting Results; and Examples of Plane Stress/Strain Analysis, Chapter 8. Development of the Linear-Strain Triangle Equations, Chapter 9. Axisymmetric Elements, Chapter 10. Isoparametric Formulation, Chapter 11. Three-Dimensional Stress Analysis, Chapter 12. Plate Bending Element, Chapter 13. Heat Transfer and Mass Transport, Chapter 14. Fluid Flow in Porous Media and through Hydraulic Networks; and Electrical Networks and Electrostatics, Chapter 15. Thermal Stress, Chapter 16. Structural Dynamics and Time-Dependent Heat Transfer

Show more Read less
Institution
A First Course In The Finite Element Method
Course
A First Course in the Finite Element Method











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
A First Course in the Finite Element Method
Course
A First Course in the Finite Element Method

Document information

Uploaded on
January 21, 2026
Number of pages
646
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

Solutions & Answer Guide
A First Course in the Finite Element Method, Enhanced
6th edition
by Daryl Logan


Chapters 1–16
SC
Course Resource
This complete test bank for Family Practice Guidelines (6th Edition) by Jill C. Cash, Cheryl
A. Glass, and Jenny Mullen provides comprehensive exam-style questions covering all 23
chapters. It includes multiple-choice, true/false, and clinical scenario–based questions
O
focused on evidence-based primary care across the lifespan.


Format: Solutions & Answer Guide
R
Edition: 6th edition
Coverage: Chapters 1–16
EM

© SCOREVAULT
AX

,TABLE OF CONTENT
Chapter 1. Introduction

Chapter 2. Introduction to the Stiffness (Displacement) Method

Chapter 3. Development of Truss Equations

Chapter 4. Development of Beam Equation

Chapter 5. Frame and Grid Equations
Chapter 6. Development of the Plane Stress and Plane Strain Stiffness Equations

Chapter 7. Practical Considerations in Modeling; Interpreting Results; and Examples of Plane
Stress/Strain Analysis

Chapter 8. Development of the Linear-Strain Triangle Equation
SC
Chapter 9. Axisymmetric Elements

Chapter 10. Isoparametric Formulation

Chapter 11. Three-Dimensional Stress Analysis
O
Chapter 12. Plate Bending Element

Chapter 13. Heat Transfer and Mass Transport
R
Chapter 14. Fluid Flow in Porous Media and through Hydraulic Networks; and Electrical
Networks and Electrostatics
EM
Chapter 15. Thermal Stress
Chapter 16. Structural Dynamics and Time-Dependent Heat Transfer
AX

, Chapter 1

1.1. A finite element is a small body or unit interconnected to other units to model a larger
structure or system.
1.2. Discretization means dividing the body (system) into an equivalent system of finite elements
with associated nodes and elements.
1.3. The modern development of the finite element method began in 1941 with the work of
Hrennikoff in the field of structural engineering.
1.4. The direct stiffness method was introduced in 1941 by Hrennikoff. However, it was not
commonly known as the direct stiffness method until 1956.
SC
1.5. A matrix is a rectangular array of quantities arranged in rows and columns that is often used
to aid in expressing and solving a system of algebraic equations.
1.6. As computer developed it made possible to solve thousands of equations in a matter of
minutes.
1.7. The following are the general steps of the finite element method.
Step 1
O
Divide the body into an equivalent system of finite elements with associated
nodes and choose the most appropriate element type.
Step 2
Choose a displacement function within each element.
R
Step 3
Relate the stresses to the strains through the stress/strain law—generally called
the constitutive law.
EM
Step 4
Derive the element stiffness matrix and equations. Use the direct equilibrium
method, a work or energy method, or a method of weighted residuals to relate the
nodal forces to nodal displacements.
Step 5
Assemble the element equations to obtain the global or total equations and
introduce boundary conditions.
AX
Step 6
Solve for the unknown degrees of freedom (or generalized displacements).
Step 7
Solve for the element strains and stresses.
Step 8
Interpret and analyze the results for use in the design/analysis process.
1.8. The displacement method assumes displacements of the nodes as the unknowns of the
problem. The problem is formulated such that a set of simultaneous equations is solved for
nodal displacements.
1.9. Four common types of elements are: simple line elements, simple two-dimensional elements,
simple three-dimensional elements, and simple axisymmetric elements.
1.10 Three common methods used to derive the element stiffness matrix and equations are
(1) direct equilibrium method
(2) work or energy methods

1
© 2023

, (3) methods of weighted residuals
1.11. The term ‘degrees of freedom’ refers to rotations and displacements that are associated with
each node.
1.12. Five typical areas where the finite element is applied are as follows.
(1) Structural/stress analysis
(2) Heat transfer analysis
(3) Fluid flow analysis
(4) Electric or magnetic potential distribution analysis
(5) Biomechanical engineering
1.13. Five advantages of the finite element method are the ability to
(1) Model irregularly shaped bodies quite easily
(2) Handle general load conditions without difficulty
SC
(3) Model bodies composed of several different materials because element equations are
evaluated individually
(4) Handle unlimited numbers and kinds of boundary conditions
(5) Vary the size of the elements to make it possible to use small elements where necessary
O
R
EM
AX



2
© 2023
$28.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
ScoreVault

Get to know the seller

Seller avatar
ScoreVault Business Hub
View profile
Follow You need to be logged in order to follow users or courses
Sold
New on Stuvia
Member since
4 days
Number of followers
0
Documents
92
Last sold
-
ScoreVault

ScoreVault is an all-in-one academic store offering verified test banks, exams, study guides, flashcards, and complete course solutions across multiple disciplines. Quality, accuracy, and results first.

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions